Русская Википедия:Математика
Шаблон:Другие значения Шаблон:Комплексная наука
Матема́тика (Шаблон:Lang-grc[1] < Шаблон:Lang-grc2 «изучение; наука») — точная формальная наука[2], первоначально исследовавшая количественные отношения и пространственные формы[3]. В более современном понимании, это наука об отношениях между объектами, о которых ничего не известно, кроме описывающих их некоторых свойств, — именно тех, которые в качестве аксиом положены в основание той или иной математической теории[4].
Математика исторически сложилась на основе операций подсчёта, измерения и описания формы объектов[5]. Математические объекты создаются путём идеализации свойств реальных или других математических объектов и записи этих свойств на формальном языке.
Математика не относится к естественным наукам, но широко используется в них как для точной формулировки их содержания, так и для получения новых результатов. Она является фундаментальной наукой, предоставляющей (общие) языковые средства другим наукам; тем самым она выявляет их структурную взаимосвязь и способствует нахождению самых общих законов природы[6].
Основные сведения
Идеализированные свойства исследуемых объектов либо формулируются в виде аксиом, либо перечисляются в определении соответствующих математических объектов. Затем по строгим правилам логического вывода из этих свойств выводятся другие истинные свойства (теоремы). Эта теория в совокупности образует математическую модель исследуемого объекта. Таким образом, первоначально исходя из пространственных и количественных соотношений, математика получает более абстрактные соотношения, изучение которых также является предметом современной математики[7].
Традиционно математика делится на теоретическую, выполняющую углублённый анализ внутриматематических структур, и прикладную, предоставляющую свои модели другим наукам и инженерным дисциплинам, причём некоторые из них занимают пограничное с математикой положение. В частности, формальная логика может рассматриваться и как часть философских наук, и как часть математических наук; механика — и физика, и математика; информатика, компьютерные технологии и алгоритмика относятся как к инженерии, так и к математическим наукам и т. д.
Этимология
Слово «математика» произошло от Шаблон:Lang-grc, что означает «изучение, знание, наука», и Шаблон:Lang-grc, первоначально означающего «восприимчивый, успевающий»[8], позднее — «относящийся к изучению», впоследствии ставшее «относящийся к математике». В частности, Шаблон:Polytonic, на латыни — ars mathematica, означает «искусство математики». Термин Шаблон:Lang-grc в современном значении этого слова «математика» встречается уже в трудах Аристотеля (IV век до н. э.). По мнению Фасмера, в русский язык слово пришло либо через Шаблон:Lang-pl, либо через Шаблон:Lang-lat[9].
В текстах на русском языке слово «математика», или маѳематика, встречается, по крайней мере, с XVII века — например, у Николая Спафария в «Книге избранной вкратце о девяти мусах и о седмих свободных художествах» (1672 год)[10].
Определения
Аристотель определял математику как «науку о количестве», и это определение являлось преобладающим вплоть до XVIII века.
Одно из первых определений предмета математики дал Декарт[11]: Шаблон:Начало цитаты К области математики относятся только те науки, в которых рассматривается либо порядок, либо мера, и совершенно не существенно, будут ли это числа, фигуры, звёзды, звуки или что-нибудь другое, в чём отыскивается эта мера. Таким образом, должна существовать некая общая наука, объясняющая всё относящееся к порядку и мере, не входя в исследование никаких частных предметов, и эта наука должна называться не иностранным, но старым, уже вошедшим в употребление именем Всеобщей математики. Шаблон:Oq Шаблон:Конец цитаты В советское время классическим считалось определение из БСЭ[12]Шаблон:Rp, данное А. Н. Колмогоровым: Шаблон:Начало цитаты Математика… наука о количественных отношениях и пространственных формах действительного мира. Шаблон:Конец цитаты Это определение Ф. Энгельса[13]; правда, далее Колмогоров поясняет, что все использованные термины надо понимать в самом расширенном и абстрактном смысле[12]Шаблон:Rp.
Формулировка Бурбаки[4]: Шаблон:Начало цитаты Сущность математики… представляется теперь как учение об отношениях между объектами, о которых ничего не известно, кроме описывающих их некоторых свойств, — именно тех, которые в качестве аксиом положены в основание теории… Математика есть набор абстрактных форм — математических структур. Шаблон:Конец цитаты
Герман Вейль пессимистически оценил возможность дать общепринятое определение предмета математики: Шаблон:Начало цитаты Вопрос об основаниях математики и о том, что представляет собой в конечном счёте математика, остаётся открытым. Мы не знаем какого-то направления, которое позволит, в конце концов, найти окончательный ответ на этот вопрос, и можно ли вообще ожидать, что подобный «окончательный» ответ будет когда-нибудь получен и признан всеми математиками.
«Математизирование» может остаться одним из проявлений творческой деятельности человека, подобно музицированию или литературному творчеству, ярким и самобытным, но прогнозирование его исторических судеб не поддаётся рационализации и не может быть объективным[14]. Шаблон:Конец цитаты
Разделы математики
Шаблон:Main Шаблон:Also 1. Математика как учебная дисциплина подразделяется в Российской Федерации на элементарную математику, изучаемую в средней школе и образованную дисциплинами:
- арифметика
- элементарная алгебра
- элементарная геометрия: планиметрия и стереометрия
- теория элементарных функций и элементы анализа
и высшую математику, изучаемую на нематематических специальностях вузов. Дисциплины, входящие в состав высшей математики, варьируются в зависимости от специальности.
Программа обучения по специальности математика[15] образована следующими учебными дисциплинами:
- Математический анализ
- Алгебра
- Аналитическая геометрия
- Линейная алгебра и геометрия
- Дискретная математика
- Математическая логика
- Дифференциальные уравнения
- Дифференциальная геометрия
- Топология
- Функциональный анализ и интегральные уравнения
- Теория функций комплексного переменного
- Уравнения в частных производных (вместо этого курса физикам читаются Методы математической физики)
- Теория вероятностей
- Математическая статистика
- Теория случайных процессов
- Вариационное исчисление и методы оптимизации
- Методы вычислений, то есть численные методы
- Теория чисел
2. Математика как специальность научных работников Министерством образования и науки Российской Федерации[16] подразделяется на специальности:
- Вещественный, комплексный и функциональный анализ
- Дифференциальные уравнения, динамические системы и оптимальное управление
- Математическая физика
- Геометрия и топология
- Теория вероятностей и математическая статистика
- Математическая логика, алгебра и теория чисел
- Вычислительная математика
- Дискретная математика и математическая кибернетика
3. Для систематизации научных работ используется раздел «Математика»[17] универсальной десятичной классификации (УДК).
4. Американское математическое общество (AMS) выработало свой стандарт для классификации разделов математики. Он называется Mathematics Subject Classification. Этот стандарт периодически обновляется. Текущая версия — это MSC 2020. Предыдущая версия — MSC 2010.
Обозначения
Шаблон:Main Шаблон:Also Поскольку математика работает с чрезвычайно разнообразными и довольно сложными структурами, система обозначений в ней также очень сложна. Современная система записи формул сформировалась на основе европейской алгебраической традиции, а также потребностей возникших позднее разделов математики — математического анализа, математической логики, теории множеств и др. Геометрия испокон века пользовалась наглядным (геометрическим же) представлением. В современной математике распространены также сложные графические системы записи (например, коммутативные диаграммы), нередко также применяются обозначения на основе графов.
Краткая история
Академиком А. Н. Колмогоровым предложена такая структура истории математики:
- Период зарождения математики, на протяжении которого был накоплен достаточно большой фактический материал;
- Период элементарной математики, начинающийся в VI—V веках до н. э. и завершающийся в конце XVI века («Запас понятий, с которыми имела дело математика до начала XVII века, составляет и до настоящего времени основу „элементарной математики“, преподаваемой в начальной и средней школе»);
- Период математики переменных величин, охватывающий XVII—XVIII века, «который можно условно назвать также периодом „высшей математики“»;
- Период современной математики — математики XIX—XX века, в ходе которого математикам пришлось «отнестись к процессу расширения предмета математических исследований сознательно, поставив перед собой задачу систематического изучения с достаточно общей точки зрения возможных типов количественных отношений и пространственных форм».
Развитие математики началось вместе с тем, как человек стал использовать абстракции сколько-нибудь высокого уровня. Простая абстракция — числа; осмысление того, что два яблока и два апельсина, несмотря на все их различия, имеют что-то общее, а именно занимают обе руки одного человека, — качественное достижение мышления человека. Кроме того, что древние люди узнали, как считать конкретные объекты, они также поняли, как вычислять и абстрактные количества, такие, как время: дни, сезоны, года. Из элементарного счёта естественным образом начала развиваться арифметика: сложение, вычитание, умножение и деление чисел.
Развитие математики опирается на письменность и умение записывать числа. Наверно, древние люди сначала выражали количество путём рисования чёрточек на земле или выцарапывали их на древесине. Древние инки, не имея иной системы письменности, представляли и сохраняли числовые данные, используя сложную систему верёвочных узлов, так называемые кипу. Существовало множество различных систем счисления. Первые известные записи чисел были найдены в папирусе Ахмеса, созданном египтянами Среднего царства. Индская цивилизация разработала современную десятичную систему счисления, включающую концепцию нуля.
Исторически основные математические дисциплины появились под воздействием необходимости вести расчёты в коммерческой сфере, при измерении земель и для предсказания астрономических явлений и, позже, для решения новых физических задач. Каждая из этих сфер играет большую роль в широком развитии математики, заключающемся в изучении структур, пространств и изменений.
Философия математики
Цели и методы
Математика изучает воображаемые, идеальные объекты и соотношения между ними, используя формальный язык. В общем случае математические понятия и теоремы не обязательно имеют соответствие чему-либо в физическом мире. Главная задача прикладного раздела математики — создать математическую модель, достаточно адекватную исследуемому реальному объекту. Задача математика-теоретика — обеспечить достаточный набор удобных средств для достижения этой цели.
Содержание математики можно определить как систему математических моделей и инструментов для их создания. Модель объекта учитывает не все его черты, а только самые необходимые для целей изучения (идеализированные). Например, изучая физические свойства апельсина, мы можем абстрагироваться от его цвета и вкуса и представить его (пусть не идеально точно) шаром. Если же нам надо понять, сколько апельсинов получится, если мы сложим вместе два и три, — то можно абстрагироваться и от формы, оставив у модели только одну характеристику — количество. Абстракция и установление связей между объектами в самом общем виде — одно из главных направлений математического творчества.
Другое направление, наряду с абстрагированием — обобщение. Например, обобщая понятие «пространство» до пространства n-измерений. «Пространство <math>\R^n</math>, при <math>n>3</math> является математической выдумкой. Впрочем, весьма гениальной выдумкой, которая помогает математически разбираться в сложных явлениях»[18].
Изучение внутриматематических объектов, как правило, происходит при помощи аксиоматического метода: сначала для исследуемых объектов формулируются список основных понятий и аксиом, а затем из аксиом с помощью правил вывода получают содержательные теоремы, в совокупности образующие математическую модель.
Основания
Шаблон:Main Вопрос сущности и оснований математики обсуждался со времён Платона. Начиная с XX века наблюдается сравнительное согласие в вопросе, что надлежит считать строгим математическим доказательством, однако отсутствует согласие в понимании того, что в математике считать изначально истинным. Отсюда вытекают разногласия как в вопросах аксиоматики и взаимосвязи отраслей математики, так и в выборе логических систем, которыми следует при доказательствах пользоваться.
Помимо скептического, известны нижеперечисленные подходы к данному вопросу.
Теоретико-множественный подход
Шаблон:Main Предлагается рассматривать все математические объекты в рамках теории множеств, чаще всего с аксиоматикой Цермело — Френкеля (хотя существует множество других, равносильных ей). Данный подход считается с середины XX века преобладающим, однако в действительности большинство математических работ не ставят задач перевести свои утверждения строго на язык теории множеств, а оперируют понятиями и фактами, установленными в некоторых областях математики. Таким образом, если в теории множеств будет обнаружено противоречие, это не повлечёт за собой обесценивание большинства результатов.
Логицизм
Шаблон:Main Данный подход предполагает строгую типизацию математических объектов. Многие парадоксы, избегаемые в теории множеств лишь путём специальных уловок, оказываются невозможными в принципе.
Формализм
Шаблон:Main Данный подход предполагает изучение формальных систем на основе классической логики.
Интуиционизм
Шаблон:Main Интуиционизм предполагает в основании математики интуиционистскую логику, более ограниченную в средствах доказательства (но, как считается, и более надёжную). Интуиционизм отвергает доказательство от противного, многие неконструктивные доказательства становятся невозможными, а многие проблемы теории множеств — бессмысленными (неформализуемыми).
Конструктивная математика
Шаблон:Main Конструктивная математика — близкое к интуиционизму течение в математике, изучающее конструктивные построенияШаблон:Прояснить. Согласно критерию конструктивности — «существовать — значит быть построенным»[19]. Критерий конструктивности — более сильное требование, чем критерий непротиворечивости[20].
Основные темы
Число (количество)
Шаблон:Main Основной раздел, рассматривающий абстракцию количества — алгебра. Понятие «число» первоначально зародилось из арифметических представлений и относилось к натуральным числам. В дальнейшем оно, с помощью алгебры, было постепенно распространено на целые, рациональные, действительные, комплексные и другие числа.
| |||||||||||||||
<math>-1,\;\frac{1}{2},\;0{,}12,\;\pi,\;3i+2,\;e^{i\pi/3},\;\ldots</math> | <math>1,\;i,\;j,\;k,\;\pi j-\frac{1}{2}k,\;\dots</math> | ||||||||||||||
Комплексные числа | Кватернионы |
Числа — Натуральные числа — Целые числа — Рациональные числа — Иррациональные числа — Алгебраические числа — Трансцендентные числа — Вещественные числа — Комплексные числа — Гиперкомплексные числа — Кватернионы — Октонионы — Седенионы — Гиперреальные числа — Сюрреальные числа — p-адические числа — Математические постоянные — Названия чисел — Бесконечность — Базы
Преобразования
Шаблон:Main Явления преобразований и изменений в самом общем виде рассматривает анализ.
<math>36 \div 9 = 4</math> | Файл:Integral as region under curve.svg | Файл:Vector field.svg | <math>\int 1_S\,d\mu=\mu(S)</math> |
Арифметика | Дифференциальное и интегральное исчисление | Векторный анализ | Анализ |
<math>\frac{d^2}{dx^2} y = \frac{d}{dx} y + c</math> | Файл:Limitcycle.svg | Файл:LorenzAttractor.png | |
Дифференциальные уравнения | Динамические системы | Теория хаоса |
Арифметика — Векторный анализ — Анализ — Теория меры — Дифференциальные уравнения — Динамические системы — Теория хаоса
Структуры
Шаблон:Main Теория множеств — Линейная алгебра — Общая алгебра (включает, в частности, теорию групп, универсальную алгебру, теорию категорий) — Алгебраическая геометрия — Теория чисел — Топология.
Пространственные отношения
Основы пространственных отношений рассматривает геометрия. Тригонометрия рассматривает свойства тригонометрических функций. Изучением геометрических объектов посредством математического анализа занимается дифференциальная геометрия. Свойства пространств, остающихся неизменными при непрерывных деформациях и само явление непрерывности изучает топология.
Геометрия — Тригонометрия — Алгебраическая геометрия — Топология — Дифференциальная геометрия — Алгебраическая топология — Линейная алгебра — Фракталы — Теория меры.
Дискретная математика
Шаблон:Main Дискретная математика включает средства исследования объектов, способных принимать только отдельные (дискретные) значения (то есть объектов, не способных изменяться плавно)[21].
<math>\forall x (P(x) \Rightarrow P(x'))</math> | Файл:DFAexample.svg | Файл:Caesar3.svg | Файл:6n-graf.svg |
Математическая логика | Теория вычислимости | Криптография | Теория графов |
Комбинаторика — Теория множеств — Теория решёток — Математическая логика — Теория вычислимости— Криптография — Теория функциональных систем — Теория графов — Теория алгоритмов — Логические исчисления — Информатика.
Награды
Шаблон:Also Самой престижной наградой за достижения в области математики, иногда называемой «Нобелевской премией для математиков», является Филдсовская премия, основанная в 1924 году и присуждаемая каждые четыре года вместе с денежным вознаграждением в размере Шаблон:Число канадских долларов. На церемонии открытия Международного конгресса математиков сообщаются имена лауреатов четырёх премий за достижения в математике:
- Премия Филдса.
- Премия Неванлинны, с 1982 года.
- Премия Гаусса, с 2006 года.
- Премия Черна, с 2010 года.
Кроме того, с 2010 года на церемонии закрытия конгресса вручается премия Лилавати за популяризацию математики.
В 2000 году Математический институт Клэя объявил список из семи математических задач, за решение каждой из которых назначен приз в размере 1 млн долларов США[22].
Коды в системах классификации знаний
- УДК 51
- Государственный рубрикатор научно-технической информации (ГРНТИ) (по состоянию на 2001 год): 27[23]
- ББК В1 или 22.1
- Математическая предметная классификация
Онлайн-сервисы
Существует большое число сайтов, предоставляющих сервис для математических расчётов. Большинство из них — англоязычные[24].
Программное обеспечение
Математическое программное обеспечение многогранно:
- Пакеты, ориентированные на набор математических текстов и на их последующую вёрстку (TeX).
- Пакеты, ориентированные на решение математических задач, численное моделирование и построение графиков (GNU Octave, Maple, Mathcad, MATLAB, Scilab).
- Электронные таблицы.
- Отдельные программы или пакеты программ, активно использующие математические методы (калькуляторы, архиваторы, протоколы шифрования/дешифрования, системы распознавания образов, кодирование аудио и видео).
Шаблон:Математическое ПО Шаблон:Системы компьютерной алгебры
См. также
- Международный конгресс математиков
- Открытые математические проблемы
- Философия математики
- (454) Матезида — астероид, названный в честь математики.
- Популяризаторы науки
Примечания
Литература
- Энциклопедии
- Шаблон:ВТ-ЭСБЕ
- Шаблон:ВТ-ЭСБЕ
- Математическая энциклопедия : в 5 т. / гл. ред. И. М. Виноградов. — Шаблон:М. : Советская энциклопедия, 1977—85. — (Энциклопедии. Словари. Справочники).
- Шаблон:Книга
- Энциклопедия математических наук и их приложенийШаблон:Недоступная ссылкаШаблон:Ref-de 1899—1934 гг. (крупнейший обзор литературы XIX века)
- Справочники
- Книги
- Шаблон:Книга Шаблон:Wayback
- Шаблон:КнигаШаблон:Недоступная ссылка
- Шаблон:Книга
- Шаблон:Книга
- Шаблон:Книга
- Шаблон:КнигаШаблон:Ref-ruШаблон:Ref-fr
Ссылки
- История математики
- МЦНМО
- Математические этюды
- Мир математических уравнений
- В. А. Успенский: Апология математики (+окончание).
- МАТЕМАТИКИ ИСТОРИЯ
Шаблон:ВС Шаблон:Наука Шаблон:Разделы математики
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:БРЭ
- ↑ 4,0 4,1 Бурбаки Н. Архитектура математики. Очерки по истории математики / Перевод И. Г. Башмаковой под ред. К. А. Рыбникова. М.: ИЛ, 1963. С. 32, 258.
- ↑ Шаблон:Cite news
- ↑ Шаблон:Cite web
- ↑ Шаблон:Книга
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Книга
- ↑ Декарт Р. Правила для руководства ума. М.-Л.: Соцэкгиз, 1936.
- ↑ 12,0 12,1 Шаблон:Публикация
- ↑ «Чистая математика имеет своим объектом пространственные формы и количественные отношения действительного мира» в источнике: Шаблон:Книга
Оригинал цитаты (нем.) — «Die reine Mathematik hat zum Gegenstand die Raumformen und Quantitätsverhältnisse der wirklichen Welt» — в источнике: Шаблон:Книга - ↑ Герман Вейль // Шаблон:Книга Шаблон:Cite web
- ↑ Государственный образовательный стандарт высшего профессионального образования. Специальность 01.01.00. «Математика». Квалификация — Математик. Москва, 2000 (Составлено под руководством О. Б. Лупанова)
- ↑ Номенклатура специальностей научных работников, утверждённая приказом Минобрнауки России от 25.02.2009 № 59
- ↑ Шаблон:Cite web
- ↑ Я. С. Бугров, С. М. Никольский. Элементы линейной алгебры и аналитической геометрии. М.: Наука, 1988. С. 44.
- ↑ Н. И. Кондаков. Логический словарь-справочник. М.: Наука, 1975. С. 259.
- ↑ Шаблон:Книга
- ↑ Шаблон:MathWorld
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite webШаблон:Недоступная ссылка
- ↑ Например: http://mathworld.wolfram.com Шаблон:Wayback