Русская Википедия:Матрица Супника

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Ма́трица Су́пника или масси́в Су́пника – названная в честь Фреда Супника из городского колледжа Нью-Йорка, который ввел это понятие в 1957 – это массив Монжа который также является симметричной матрицей.

Математическое определение

Матрица Супника – это квадратный массив Монжа, симметричный вокруг главной диагонали.

Матрица вида n × n является матрицей Супника, если для всех i, j, k, l таких что

<math>1\le i < k\le n</math> and <math>1\le j < l\le n</math>

затем

<math>a_{ij} + a_{kl} \le a_{il} + a_{kj}\,</math>

а также

<math>a_{ij} = a_{ji}. \,</math>

Логически эквивалентное определение дают Рудольф и Вёджингер, которые в 1995 году доказали, что

Матрица – это матрица Супника, если она может быть записана как сумма матрицы сумм S и неотрицательной линейной комбинации блочных матриц LL-UR.

Матрица сумм определяется в терминах последовательности n вещественных чисел { αi }:

<math>

S = [s_{ij}] = [\alpha_i + \alpha_j]; \, </math>

а блочная матрица LL-UR состоит из двух симметрично расположенных прямоугольнков в нижнем левом и верхнем правом углах, для которых a ij = 1, при этом все остальные элементы матрицы равны нулю.

Свойства

Сложение двух матриц Супника дает новую матрицу Супника (Дейнеко и Вёджингер, 2006).

Умножение матрицы Супника на неотрицательное вещественное число дает новую матрицу Супника (Дейнеко и Вёджингер, 2006).

Если матрицу расстояний в задаче коммивояжёра можно записать как матрицу Супника, то этот конкретный случай задачи допускает простое решение (даже если задача, как правило, NP-трудная).

Ссылки