Русская Википедия:Машинный перевод

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Distinguish Шаблон:Эта статья

Маши́нный перево́д — процесс перевода текстов (письменных, а в идеале и устных) с одного естественного языка на другой с помощью специальной компьютерной программы. Так же называется направление научных исследований, связанных с построением подобных систем.

Формы организации взаимодействия ЭВМ и человека при машинном переводе

  • С постредактированием: исходный текст перерабатывается машиной, а человек-редактор исправляет результат.
  • С предредактированием: человек приспосабливает текст к обработке машиной (устраняет возможные неоднозначные прочтения, упрощает и размечает текст), после чего начинается программная обработка.
  • С интерредактированием: человек вмешивается в работу системы перевода, разрешая трудные случаи.
  • Смешанные системы (например, одновременно с пред- и постредактированием).

Автоматизированный перевод

Вместо «машинный» иногда употребляется слово автоматический, что не влияет на смысл. Однако термин автоматизированный перевод имеет совсем другое значение — при нём программа просто помогает человеку переводить тексты.

Автоматизированный перевод предполагает такие формы взаимодействия:

  • Частично автоматизированный перевод: например, использование переводчиком-человеком компьютерных словарей.
  • Системы с разделением труда: компьютер обучен переводить только фразы жёстко заданной структуры (но делает это так, чтобы исправлять за ним не требовалось), а всё, не уложившееся в схему, отдаёт человеку.

В англоязычной терминологии также различаются термины Шаблон:Lang-en (полностью автоматический перевод) и Шаблон:Lang-en или Шаблон:Lang-en (автоматизированный); если же надо обозначить и то, и другое, пишут M(A)T.

Существуют несколько принципиально разных подходов к построению алгоритмов машинного перевода: основанный на правилах (rule-based), статистический, или основанный на статистике (statistical-based), нейронный машинный перевод (neural machine translation, NMT). Первый подход является традиционным и используется большинством разработчиков систем машинного перевода (ПРОМТ в России, SYSTRAN во Франции, Linguatec в Германии и др.)[1] Ко второму типу относится популярный сервис Яндекс.Переводчик, Переводчик Google, а также новый сервис от ABBYY[2]. Сейчас большинство систем являются гибридными — сочетая правила, статистику и нейронные сети.

Статистический машинный перевод

Статистический машинный перевод — это разновидность машинного перевода текста, основанная на сравнении больших объёмов языковых пар. Языковые пары — тексты, содержащие предложения на одном языке и соответствующие им предложения на втором, могут быть как вариантами написания двух предложений человеком — носителем двух языков, так и набором предложений и их переводов, выполненных человеком. Таким образом статистический машинный перевод обладает свойством «самообучения». Чем больше в распоряжении имеется языковых пар и чем точнее они соответствуют друг другу, тем лучше результат статистического машинного перевода. Под понятием «статистического машинного перевода» подразумевается общий подход к решению проблемы перевода, который основан на поиске наиболее вероятного перевода предложения с использованием данных, полученных из двуязычной совокупности текстов. В качестве примера двуязычной совокупности текстов можно назвать парламентские отчеты, которые представляют собой протоколы дебатов в парламенте. Двуязычные парламентские отчеты издаются в Канаде, Гонконге и других странах; официальные документы Европейского экономического сообщества издаются на 11 языках; а Организация объединённых наций публикует документы на нескольких языках. Как оказалось, эти материалы представляют собой бесценные ресурсы для статистического машинного перевода.

История машинного перевода

Шаблон:Перевести

Мысль использовать ЭВМ для перевода была высказана в 1947 году в США, сразу после появления первых ЭВМ. Первая публичная демонстрация машинного перевода (так называемый Джорджтаунский эксперимент) состоялась в 1954 году. Несмотря на примитивность той системы (словарь в 250 слов, грамматика из 6 правил, перевод нескольких простых фраз), этот эксперимент получил широкий резонанс: начались исследования в Англии, Болгарии, ГДР, Италии, Китае, Франции, ФРГ, Японии и других странах; в том же 1954 году и в СССР.

К середине 1960-х в США для практического использования были предоставлены две системы русско-английского перевода:

  • MARK (в Департаменте иностранной техники ВВС США);
  • GAT (разработка Джорджтаунского университета, использовалась в Национальной лаборатории атомной энергии в Окридже и в центре Евратома в г. Испра, Италия).

Однако созданная для оценки подобных систем комиссия Шаблон:Iw пришла к выводу, что в силу низкого качества машинно переведённых текстов эта деятельность в условиях США нерентабельна. Хотя комиссия рекомендовала продолжать и углублять теоретические разработки, в целом её выводы привели к росту пессимизма, снижению финансирования, часто к полному прекращению работ по этой тематике.

Тем не менее, в ряде стран исследования продолжались, чему способствовал постоянный прогресс вычислительной техники. Особенно существенным фактором стало появление мини- и персональных компьютеров, а с ними всё более сложных словарных, поисковых и т. п. систем, ориентированных на работу с естественно-языковыми данными. Росла и необходимость в переводе как таковом ввиду роста международных связей. Все это привело к новому подъёму этой области, наступившему примерно с середины 1970-х. В 1980-е наступило время широкого практического использования переводческих систем, сложился рынок коммерческих разработок по этой теме.

Впрочем, мечты, с которыми человечество полвека назад взялось за задачу машинного перевода, в значительной мере остаются мечтами: высококачественный перевод текстов широкой тематики по-прежнему недостижим. Однако несомненным является ускорение работы переводчика при использовании систем машинного перевода: по оценкам конца 1980-х, до пяти раз.

В настоящее время существует множество коммерческих проектов машинного перевода. Одним из пионеров в области машинного перевода была компания SYSTRAN. В России большой вклад в развитие машинного перевода внесла группа под руководством проф. Р. Г. Пиотровского (Российский государственный педагогический университет имени А. И. Герцена, Санкт-Петербург).

Философские обоснования

Шаблон:Заготовка раздела В 1960-х годах Станислав Лем обобщал высказывания о проблеме машинного перевода и связи с пониманием текста самой машиной (что связано, например, с обсуждением сформулированной в 1980 году концепции «китайской комнаты»): Шаблон:Quote

Качество перевода

Шаблон:Ориссный раздел Качество перевода зависит от тематики и стиля исходного текста, а также грамматической, синтаксической и лексической родственности языков, между которыми производится перевод. Машинный перевод художественных текстов практически всегда оказывается неудовлетворительного качества. Тем не менее для технических документов при наличии специализированных машинных словарей и некоторой настройке системы на особенности того или иного типа текстов возможно получение перевода приемлемого качества, который нуждается лишь в небольшой редакторской корректировке.Шаблон:Нет АИ Чем более формализован стиль исходного документа, тем большего качества перевода можно ожидать. Самых лучших результатов при использовании машинного перевода можно достичь для текстов, написанных в техническом (различные описания и руководства) и официально-деловом стиле.

Применение машинного перевода без настройки на тематику (или с намеренно неверной настройкой) служит предметом многочисленных бытующих в Интернете шуток. Из старых и наиболее популярных примеров таких шуток наиболее известен текст перевода документации к драйверу мыши, известный как «Гуртовщики Мыши», заявленный как «перевод компьютерной документации системой машинного перевода Poliglossum на основе медицинского, коммерческого и юридического словарей»[3][комм. 1]. Из кратких — фраза «Шаблон:Lang-en2», которую онлайн-переводчик «ПРОМТ» (версия 7.0, 2007) превращал в «Наш кот родил трёх котят — двух белых и одного афроамериканца»[6]. Если «афроамериканца» ещё можно было сделать «чёрным», написав «Шаблон:Lang-en2», то «коту» так и не получалось сменить пол: например, Шаблон:Lang-en2 переводился как «самка кот».

Чаще всего подобные шутки связаны с тем, что программа не распознаёт контекст фразы и переводит термины дословно, к тому же не отличая собственных имён от обычных слов. Тот же переводчик ПРОМТ превращал «Лев Толстой» в «Lion Thick» («толстый лев»), «bra-ket notation» в «примечание Кети лифчика», «Lie algebra» — в «алгебру Лжи», «eccentricity vector» — в «вектор оригинальности», «Shawnee Smith» в «индеец племени шони Смит», популярную в сериале «Игра в кальмара» игру «Red light, green light» — в «красный свет, зелёный свет» и т. п. Переводчик Google, наоборот, слово «Шаблон:Lang-en2» часто принимал за фамилию госсекретаря США.

См. также

Комментарии

Шаблон:Примечания

Примечания

Шаблон:Примечания

Литература

Шаблон:Викисловарь

Ссылки

Внешние ссылки

Шаблон:Выбор языка

Шаблон:Обработка естественного языка Шаблон:Искусственный интеллект


Ошибка цитирования Для существующих тегов <ref> группы «комм.» не найдено соответствующего тега <references group="комм."/>