Русская Википедия:Модель Форухи — Блумер
Модель Форухи — Блумер — дисперсионные уравнения для среды с поглощением выведенные А. Р. Форухи и И. Блумер для комплексного показателя преломления n +ik, которые были опубликованы в 1986[1] и 1988 годах[2]. Публикация 1986 г. относится к аморфным материалам, а публикация 1988 г. — к кристаллическим. Впоследствии, в 1991 году, их работа была включена в качестве главы в «Справочник оптических констант». Дисперсионные уравнения Форухи — Блумер описывают, как фотоны различной энергии взаимодействуют с тонкими плёнками. При использовании в спектроскопической рефлектометрии дисперсионные уравнения Форухи — Блумер позволяют определять n (коэффициент преломления) и k (коэффициент поглощения) для аморфных и кристаллических материалов как функции энергии фотона E. Значения n(E) и k(E) называются спектрами n и k, которые также могут выражаться в зависимости от длины волны света λ, поскольку E = hc/λ, где h - постоянная Планка, а c — скорость света в вакууме. Вместе n и k часто называют «оптическими константами» материала (хотя они не являются константами, поскольку их значения зависят от энергии фотонов).
Уравнения
Вывод дисперсионных уравнений Форухи — Блумер основан на получении выражения для k как функции энергии фотона, символически записанного как k(E), исходя из первых принципов квантовой механики и физики твёрдого тела. Выражение для n как функции энергии фотона, символически записанное как n(E), затем определяется из выражения для k (E) в соответствии с соотношениями Крамерса — Кронига[3], которых гласят, что n(E) — это преобразование Гильберта k(E).
Аморфные материалы
Дисперсионные уравнения Форухи — Блумер для n(E) и k(E) для аморфных материалов имеют вид:
- <math> k(E) = \frac{A(E-E_g)^2}{E^2-BE+C} \,, </math>
- <math> n(E) = n(\infty)+\frac{(B_0 E + C_0 )}{E^2-BE+C} \,. </math>
Каждый из пяти параметров A, B, C, Eg и n(∞) имеет физическое значение[1]. Eg — ширина запрещённой зоны материала в оптическом диапазоне. A, B и C зависят от зонной структуры материала. Это положительные константы, такие что 4C-B2>0. Наконец, n(∞) — константа больше единицы, представляет собой значение n при E = ∞. Параметры B0 и C0 в уравнении для n (E) не являются независимыми параметрами, но зависят от основных параметров модели A, B, C и Eg. Они задаются формулами:
- <math> B_0 = \frac{A}{Q} \ \left (\frac{-B^2}{2} \ + E_gB - {E_g}^2 + C \right)\,, </math>
- <math> C_0 = \frac{A}{Q} \ \left [({E_g}^2 + C) \frac{B}{2} \ - 2E_g C \right]\,, </math>
где
- <math> Q = \frac{1}{2} \ (4C - B^2 )^{\frac{1}{2}}\,. </math>
Таким образом, для аморфных материалов нужно задать пять параметров, чтобы полностью описать зависимость как n, так и k от энергии фотона E.
Кристаллические материалы
Для кристаллических материалов, которые имеют несколько пиков в спектрах n и k, дисперсионные уравнения Форухи — Блумер обобщаются следующим образом:
- <math> k(E) = \sum_{i=1}^q \left [\frac{A_i(E - E_{g_i})^2}{E^2-B_iE+C_i} \right] \,,</math>
- <math> n(E) = n(\infty)+\sum_{i=1}^q \left [\frac{B_{0_i}E+C_{0_i}}{E^2-B_iE+C_i} \right]\,. </math>
Количество членов в каждой сумме q равно количеству пиков в n- и k- спектрах материала. Каждый член в сумме имеет свои собственные значения параметров Ai, Bi, Ci, Egi, а также свои собственные значения B0i и C0i. Подобно аморфному случаю, все параметры имеют физическое значение[2].
Характеризация тонких плёнок
Показатель преломления (n) и коэффициент поглощения (k) связаны с взаимодействием между материалом и падающим светом и относятся к преломлению и поглощению света в материале, соответственно. Их можно рассматривать как «отпечатки пальцев» для материала. Покрытия из тонкоплёночного материала на различных подложках обеспечивают важные применения для индустрии микротехнологий, и n, k, а также толщина t этих тонкоплёночных составляющих должны измеряться и контролироваться для обеспечения воспроизводимости технологических процессов.
Изначально ожидалось, что дисперсионные уравнения Форухи — Блумер для n и k будут применяться к полупроводникам и диэлектрикам, будь то в аморфном, поликристаллическом или кристаллическом состояниях. Однако было показано, что они также описывают n- и k- спектры прозрачных проводников[4], а также металлических соединений[5][6][7][8][9][10][11][12][13][14]. Было обнаружено, что этот формализм для кристаллических материалов применим также к полимерам[15][16][17], которые состоят из длинных цепочек молекул, не образующих кристаллографическую структуру в классическом смысле.
В литературе можно найти другие модели дисперсии, которые можно использовать для получения n и k, такие как Тауц — Лоренца[18][19]. Две хорошо известные модели: Коши и Зелмейера предоставляют эмпирические выражения для n, действительные в ограниченном диапазоне частот, и полезны только для плёнок со слабым поглозщением, где k = 0. Следовательно, модель Форухи — Блумер используется для измерения тонких плёнок в различных приложениях[4][5][6][7][8][9][10][11][12][13][14][15][16][17].
В следующих обсуждениях все переменные энергии фотонов E будут описаны в терминах длины волны света λ, поскольку экспериментальные переменные, связанные с тонкими плёнками, обычно измеряются по спектру длин волн. Спектры n и k тонкой плёнки нельзя измерить напрямую, их следует определять косвенно, исходя из измеряемых величин, которые зависят от них. Спектроскопическая отражательная способность, R(λ), является одной из таких измеряемых величин. Другая величина — спектроскопический коэффициент пропускания T (λ), применяется, когда подложка на которой расположена плёнка прозрачна. Спектроскопический коэффициент отражения тонкой плёнки на подложке представляет собой отношение интенсивности света, отражённого от образца, к интенсивности падающего света, измеренного в каком-то диапазоне длин волн, тогда как спектроскопический коэффициент пропускания, T (λ), представляет собой отношение интенсивности света, прошедшего через образец, к интенсивности падающего света, измеренного в каком-то диапазоне длин волн; как правило, будет наблюдаться также отражённый сигнал R(λ), сопровождающий T(λ).
Измеримые величины R(λ) и T(λ) зависят не только от n(λ) и k(λ) плёнки, но также от толщины плёнки t, а также от n(λ) и k(λ) подложки. Для кремниевой подложки значения n(λ) и k(λ) известны и принимаются в качестве заданных входных данных. Задача определения характеристик тонких плёнок включает извлечение t, n(λ) и k(λ) плёнки из измерения R(λ) и/или T(λ). Этого можно достичь, комбинируя дисперсионные уравнения Форухи — Блумер для n(λ) и k(λ) с уравнениями Френеля для отражения и пропускания света на границе раздела[20], чтобы получить теоретические, физически обоснованные выражения для коэффициента отражения и коэффициент пропускания. При этом задача сводится к получению пяти параметров A, B, C, Eg и n(∞), которые содержат n(λ) и k(λ), наряду с толщиной плёнки, t, за счёт использования нелинейного регрессионного анализ методом наименьших квадратов[21][22]. Процедура подгонки влечёт за собой итеративное улучшение значений A, B, C, Eg, n(∞), t, чтобы уменьшить сумму квадратов ошибок между модельными R(λ) и T(λ) и измеренными спектрами R(λ) и T(λ).
Помимо спектрального коэффициента отражения и пропускания, спектроскопическая эллипсометрия также может использоваться аналогичным образом для характеризации тонких плеёнок и определения t, n(λ) и k(λ).
Примеры измерений
Следующие ниже примеры показывают универсальность использования дисперсионных уравнений Форухи — Блумер для характеристики тонких плёнок с использованием инструмента, основанного на спектроскопической отражательной способности, близкой к нормальному падению. Спектроскопическое пропускание, близкое к нормальному, также используется, когда подложка прозрачна. Спектры n(λ) и k(λ) каждой плёнки получают вместе с толщиной плёнки в широком диапазоне длин волн от глубокого ультрафиолетового до ближнего инфракрасного (190—1000 нм).
В следующих примерах обозначения теоретической и измеренной отражательной способностей на спектральных графиках выражаются как «R-theor» и «R-Meas», соответственно.
Ниже приведены схемы, изображающие процесс измерения тонких плёнок:
Уравнения дисперсии Форухи — Блумер в сочетании со Строгим методом связанных волн (RCWA) также использовались для получения подробной информации о профиле (глубина, CD, угол боковой стенки) траншейных поверхностных структур. Для извлечения структурной информации данные поляризованного широкополосного отражения, Rs и Rp, должны быть измерены в большом диапазоне длин волн из периодической структуры (решётки), а затем проанализированы с помощью модели, которая включает дисперсионные уравнения Форухи — Блумер и RCWA. Входные данные для модель включают шаг решётки и n- и k- спектры всех материалов в структуре, в то время как выходные данные могут включать глубину, CD в нескольких местах и даже угол боковой стенки. Спектры n и k таких материалов могут быть получены в соответствии с методологией, описанной в этом разделе для измерений тонких плёнок.
Ниже приведены схемы, изображающие процесс измерения траншейных поверхностных структур. Далее следуют примеры измерения траншеи.
Шаблон:Кратное изображение В рисунке 1 показан один широкий максимум в спектрах n(λ) и k(λ) плёнки a-Si, как и ожидалось для аморфных материалов. По мере перехода материала к кристалличности широкий максимум сменяется несколькими более резкими пиками в его спектрах n(λ) и k(λ), как показано на графиках.
Когда измерение включает две или более плёнки в стопке плёнок, теоретическое выражение для коэффициента отражения должно быть расширено, чтобы включить спектры n(λ) и k(λ) плюс толщину t каждой плёнки. Однако регрессия может не сходиться к уникальным значениям параметров из-за нелинейного характера выражения для отражательной способности. Так что полезно исключить некоторые из неизвестных. Например, спектры n(λ) и k(λ) одной или нескольких плёнок могут быть известны из литературы или предыдущих измерений и удерживаться фиксированными (не могут изменяться) во время регрессии. Для получения результатов, показанных на рисунке 1, спектры n(λ) и k(λ) слоя SiO2 были фиксированы, а другие параметры, n(λ) и k(λ) a-Si, плюс толщина как a-Si, так и SiO2 можно было изменять.
Примечания
- ↑ 1,0 1,1 Шаблон:Cite journal
- ↑ 2,0 2,1 Шаблон:Cite journal
- ↑ Шаблон:Cite book
- ↑ 4,0 4,1 Шаблон:Cite journal
- ↑ 5,0 5,1 Шаблон:Cite journal
- ↑ 6,0 6,1 Шаблон:Cite journal
- ↑ 7,0 7,1 Шаблон:Cite journal
- ↑ 8,0 8,1 Шаблон:Cite journal
- ↑ 9,0 9,1 Шаблон:Cite journal
- ↑ 10,0 10,1 Шаблон:Cite journal
- ↑ 11,0 11,1 Шаблон:Cite journal
- ↑ 12,0 12,1 Шаблон:Cite journal
- ↑ 13,0 13,1 Шаблон:Cite journal
- ↑ 14,0 14,1 Шаблон:Cite journal
- ↑ 15,0 15,1 Шаблон:Cite journal
- ↑ 16,0 16,1 Шаблон:Cite journal
- ↑ 17,0 17,1 Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite book
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal