Русская Википедия:Музей искусств и ремёсел (Париж)

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Музей Музей искусств и ремёсел (Шаблон:Lang-fr) — самый старый технический музей Европы. Находится в 3-м округе Парижа на улице Реомюр, в здании бывшей церкви Сен-Мартен-де-Шан.

История музея

Церковь Сен-Мартен-де-Шан (Шаблон:Lang-fr) построена на месте старой церкви эпохи Меровингов. Легенда гласит, что эта церковь была разрушена во время нашествий норманнов. Точного подтверждения этому нет, но достоверно известно, что в середине XI века Генрих I распоряжается отстроить на этом месте «вторую церковь». Построенная в 1059—1060 годах церковь переходит в 1076 году в ведение ордена Клюни.

Аббатство просуществовало до Французской революции. В 1794 году аббат Анри Грегуар предложил Национальному конвенту проект создания учреждения, целью которого станет «улучшение национальной промышленности, изучение и сохранение машин и инструментов, чертежей, и моделей, книг и различной документации всех существующих искусств и ремёсел». В ведение нового учреждения были переданы конфискованные во время Великой французской революции частные коллекции, для сохранения которых в 1802 году под патронажем Консерватории искусств и ремёсел в помещении парижской церкви Сен-Мартен-де-Шан был создан Музей искусств и ремёсел. По настоящее время музей хранит одну из выдающихся технических коллекций Европы[1].

Пострадавшее во время революции здание церкви требовало значительного ремонта (часть этого ремонта описывает в упрощенной форме Лев Толстой в своем произведении «Первая русская книга для чтения», и более подробно Яков Перельман в книге «Физика на каждом шагу»), и музей впервые открывает свои двери широкой публике лишь в 1802 году. С самого зарождения музея одним из принципов его стала интерактивность — работники музея не только показывали, но и объясняли посетителям, как работают выставленные в музее механизмы. Одновременно открывается одноимённое учебное заведение, профессора которого читают лекции по разным областям техники и технологии, а слушатели имеют возможность практиковать полученные знания на выставленных в музее машинах. Институт CNAM существует до сих пор, являясь одним из самых престижных учебных заведений Франции и самым популярным учебным заведением для студентов, совмещающих учёбу с работой (вечернее и заочное отделения). Его филиалы открыты во многих городах Франции.

Файл:Saint-Martin-des-Champs Chapelle 01.jpg
Церковь Сен-Мартен-де-Шан

В 1830 году под влиянием технической революции консерватория реформируется. Из музея убирают коллекции сельскохозяйственных и ткацких машин, заменяя их на модели и чертежи более современных машин: паровой, кузнечной, бумагоделательной, машины Рада для производства сахара и многих других.

XX век дал Музею множество новых тем: от автомобиля до покорения космоса. В 1990-х годах сценография музея была полностью перестроена, что позволило органично включить эти темы в уже существующую богатую коллекцию музея.

Музей профилактики производственных травм

24 сентября 1904 года при CNAM открывается музей профилактики производственных травм (Шаблон:Lang-fr), существующий до сих пор.

Музей в массовой культуре

В помещении музея начинается и заканчивается повествование романа Умберто Эко «Маятник Фуко».

Постоянная коллекция

Коллекция музея разбита на 7 частей:

  • Научные и измерительные инструменты
  • Материалы
  • Строительство
  • Коммуникации
  • Энергия
  • Механика
  • Транспорт

Каждый из разделов музея организован в хронологическом порядке.

Файл:Globe-IMG 0493.jpg
Глобус, экспонат музея

Научные и измерительные инструменты

Первые измерительные инструменты появились в доисторические времена — издревле человек стремился максимально точно определить время дня и ночи, измерить расстояние и вес.

В эпоху Возрождения амбиции человека возрастают: в порыве исследования нашей планеты он пытается определить собственное местонахождение. Учёные создают новые измерительные механизмы, счётные машины. Большинство инструментов изготавливается часовыми мастерами или ювелирами, что возводит многие из них в ранг произведений искусства.

В XVIII веке наука — званый гость светских салонов. Механика, оптика, гидравлика, электричество — наглядные демонстрации законов физики пользуются успехом у публики. В то же время, возрастающая точность приборов позволяет создание первых научных лабораторий (наиболее известна лаборатория Лавуазье), отмечая тем самым новую ступень в развитии науки — более специализированной, более строгой.

Для упрощения расчётов — будь то коммерческие, научные или административные — вводится метрическая десятичная система.

Микроскоп Мани, изготовленный для герцога Шолн, 1750-е годы
Файл:Microscope-IMG 0513.jpg

В 1751—1754 годах оптик Алексис Мани (Шаблон:Lang-fr) создал 8 популярных тогда салонных микроскопов. Учитывая применение инструмента, внешнему виду его отводилось столько же внимания, сколько созданию самой оптической части микроскопа — бронзовые украшения были поручены скульптору Кафьери (Шаблон:Lang-fr).

Один из этих микроскопов (на илл.) предназначался герцогу Шолн (Шаблон:Lang-fr, 1712—1777), владевшему известным физическим салоном в Париже. Революционным для того времени было создание микро-винтов для тонкого манипулирования предметным столиком и окуляром.

Существовавшие в это время моделей микроскопы можно разбить на три категории:

  • многолинзовые микроскопы, появившиеся в конце XVI века как логическое продолжение первых телескопов;
  • однолинзовые микроскопы, как микроскопы Мани. Изобретение этих микроскопов в XVII веке серьёзно продвинуло человечество в познании устройства живых организмов;
  • солнечные микроскопы, использовавшиеся по большей части в физических салонах XVIII века, позволявшие проецировать на стену увеличенные изображения объектов, невидимых невооружённым глазом: блошиных лап, пыльцы и т. п.

Во второй половине XIX века развитие научных и измерительных инструментов проходит в двух направлениях. С одной стороны, из физических салонов XVIII века выходит экспериментальная наука, позволяющая анализировать, воспроизводить и понимать природу многих природных явлений. С другой, новые инструменты очень быстро замещают ручной труд там, где это возможно — счётные машины и измерительные машины полностью изменяют стиль работы страховых компаний, заводов и фабрик.

Счётная машина Леона Болле, 1889 год

Два с половиной века после создания счётной машины Паскаля, Леон Болле (Шаблон:Lang-fr, 1870—1913) создаёт свою счётную машину (на илл.). Отцу Леона — мастеру-литейщику колоколов — требовалось производить множество сложных расчётов гармоник, поэтому счётную машину для него проектируют с возможностью умножения.

В том же году изобретение получает золотую медаль Всемирной выставки.

Принцип работы машины заложен в физической реализации таблицы умножения — прямоугольной металлической пластинки со стержнями, длина каждого стержня соответствует произведению двух чисел. Скорость вычисления была немыслимой для той эпохи — 250 операций умножения, 120 извлечений корня или 100 операций деления в час.

Файл:Ordi-mecanique-IMG 0517.jpg

XX век — человек расширяет границы познания науки в сторону как бесконечно малого, так и бесконечно большого. Новые инструменты позволяют совершать новые открытия.

Принципиальное отличие от исследований прошлого — отказ от принципа непосредственного наблюдения. Астроном может слушать эхо большого взрыва, положившего начало нашей вселенной. Биолог использует электронные микроскопы, пытаясь понять устройство живой материи вплоть до атомного уровня. Оптика и механика постепенно замещаются электроникой.

Электронный микроскоп и суперкомпьютер
Файл:Microscope-IMG 0518.jpg

Купленный в 1973 году Французским институтом медицинских исследований (Шаблон:Lang-fr), электронный микроскоп (на илл. слева) использовался для изучения рака, здоровых и патогенных клеток человеческого организма.

Переход с оптического микроскопа на электронный в несколько раз увеличил разрешающую способность инструмента. Это позволило развить медицину (идентификация вируса СПИДа), металлургию (механизм пластической деформации) и другие области современной науки.

Созданный в 1985 году суперкомпьютер Cray-2 (на илл. справа) использовался прежде всего для метеорологических расчётов. В то же время, компьютеры этой серии позволили продвинуться в исследовании гидродинамики, океанографии и других задач, требующих больших вычислительных мощностей.

Векторная архитектура машины позволяла производить достичь небывалой для того времени мощности вычислений — 243Мгц. Для охлаждения компьютера, его платы были целиком помещены в охлаждающую жидкость.

Файл:Cray-2-IMG 0515.jpg

Материалы

Используемые человеком материалы менялись с развитием цивилизации. Не только из-за изменений доминирующего в обществе вкуса, но и вследствие развития соответствующих технологий. От интуиции мастеров и опыта предков человек постепенно перешёл к физическому и химическому анализу этапов производства материалов.

Во времена Старого Режима мастера объединялись в корпорации, чей контроль способствовал качеству и стандартизации производства. Необходимости разных ремёсел обуславливали местонахождение мастерских: мастера-стеклодувы и производители черепицы, нуждавшиеся в большом количестве энергии для производства, строили свои мастерские в лесах; литейщики, с появлением доменных печей ставшие выплавлять более качественный чугун, — недалеко от месторождений угля; кузнецы — вдоль рек, где энергия текущей воды могла быть использована для приведения в движение мехов и молотов; текстильное производство было поделено между деревней, где производились грубые ткани, и городом, обрабатывавшим шерсть, шёлк и т. п.

Технический прогресс XVIII века структурно перестраивает производство. Благодаря созданию паровой машины, новые ткацкие станки позволяют ткать быстрее и качественнее. Использование коксующегося угля улучшило качество выплавляемого чугуна.

В XIX веке появляются новые материалы: алюминий, пластик, новые типы сталей и стёкол. Новые краски и ткани (в первую очередь искусственный шёлк) преобразовывают ткацкое производство.

Вторая половина XX приносит кардинально новый подход: если раньше человек подбирал среди природных материалов наиболее подходящий, то теперь он может напрямую создавать необходимый ему материал, исходя из требуемых характеристик.

Машина непрерывного литья заготовок, 1984 год
Файл:CNAM maquette d'une coulée continue.jpg

Вплоть по 1960—1970 годов, производства прокатного листа происходило в три этапа:

  1. разлив стали слитками;
  2. нарезание слитков на слябы;
  3. раскатка слябов в листовое железо.

Современные литейные машины позволяют избежать первого этапа, отливая слябы произвольной длины, тем самым существенно снижая затраты времени и энергии на производство.

В музее представлены также стенды с прототипами литейных машин будущего, которые, возможно, позволят упразднить и второй этап, разливая сталь непосредственно листами.

Строительство

Многоковшовый экскаватор Куврё, 1870 год
Файл:Excavateur à godets CNAM-IMG 0538.jpg

Альфонс Куврё (Шаблон:Lang-fr) начинает карьеру в 1840-х годах на прокладке железных дорог. В 1860 году он патентует первую версию своего многоковшового экскаватора. В последующие годы изобретатель постоянно совершенствует свой аппарат, и в 1863 году ему доверяют разработку экскаватора для рытья Суэцкого канала.

Основной частью экскаватора является стрела с цепью ковшей для разработки грунта. Выбранный грунт сбрасывается в вагонетки, подаваемые по параллельному пути. Сам экскаватор передвигается по специальной, трёхрельсовой железной дороге, которую перекладывают в процессе продвижения работ. Экскаватор приводится в движение двумя паровыми машинами: одна позволяет передвигать сам экскаватор, другая — более мощная — приводит в движение цепь ковшей.

Коммуникации

Энергия

Механика

Транспорт

Галерея

Практическая информация

Музей открыт каждый день кроме понедельников и праздничных дней.

Вход в музей бесплатный в первое воскресенье каждого месяца.

Часы работы: с 10:00 до 18:00, по четвергам до 21:30.

По средам и субботам для желающих открыты технические кружки.

См. также

Примечания

Шаблон:Примечания

Ссылки