Русская Википедия:Мультиграф

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Файл:Multi-pseudograph.svg
Мультиграф с кратными рёбрами (красные) и петлями (синие). Не все авторы разрешают мультиграфам иметь петли.

В теории графов мультиграфом (или псевдографом) называется граф, в котором разрешается присутствие кратных рёбер (их также называют «параллельными»[1]), то есть рёбер, имеющих те же самые конечные вершины. Таким образом, две вершины могут быть соединены более чем одним ребром (тем самым мультиграфы отличаются от гиперграфов, в которых каждое ребро может соединять любое число вершин, а не в точности две).

Существует два различных способа обозначения рёбер мультиграфа. Некоторые говорят, что, как и в случае графов без кратных рёбер, ребро определяется вершинами, которые оно соединяет, но каждое ребро может повторяться несколько раз. Другие определяют рёбра равноправными с вершинами элементами графа и они должны иметь собственную идентификацию.

Неориентированные мультиграфы (рёбра без собственной идентификации)

Формально, мультиграфом G называется упорядоченная пара G:=(V, E), в которой

Мультиграфы можно использовать для представления возможных воздушных путей самолёта. В этом случае мультиграф становится ориентированным и пара ориентированных параллельных рёбер, связывающая города, показывает, что можно лететь в обоих направлениях — из города или в город.

Некоторые авторы позволяют мультиграфам иметь петли, то есть рёбра, соединяющие вершину с ней же[2], в то время как другие называют такие графы псевдографами, оставляя термин мультиграф для графов без петель[3].

Ориентированные мультиграфы (рёбра без собственной идентификации)

Мультиорграф — это ориентированный граф, в котором разрешены кратные дуги, то есть дуги, имеющие те же начальные и конечные вершины.

Мультиорграфом G называется упорядоченная пара G:=(V,A), в которой

  • V — множество вершин,
  • A — мультимножество упорядоченных пар вершин. Элементы этого множества называются дугами.

Смешанный мультиграф G:=(V,E, A) можно определить тем же образом, что и смешанный граф.

Ориентированные мультиграфы (рёбра с собственной идентификацией)

Мультиорграфом (или колчаном) G называется упорядоченная четвёрка G:=(V, A, s, t), в которой

  • Vмножество вершин,
  • Aмножество дуг,
  • <math>s : A \rightarrow V</math> назначает каждой дуге начальную вершину,
  • <math>t : A \rightarrow V</math> назначает каждой дуге конечную вершину.

В теории категорий небольшие категории могут быть определены как мультиорграфы (с дугами, имеющими собственную идентификацию), оснащённые законом построения и петлями для каждой вершины, служащими левой и правой идентификацией для построения. По этим причинам в теории категорий под термином граф обычно понимается «мультиорграф», и лежащий в основе мультиорграф категории называется базовым орграфом.

Разметка

Мультиграфы и мультиорграфы поддерживают понятие разметки тем же образом, однако в этом случае нет единства терминологии.

Определения помеченные мультиграфы и помеченные мультиорграфы похожи, так что здесь укажем определение только для мультиорграфа.

Определение 1: Помеченный мультиорграф — это помеченный граф с метками на дугах и вершинах.

Формально: Помеченный мультиорграф G — это кортеж из 8 элементов <math>G=(\Sigma_V, \Sigma_A, V, A, s, t, \ell_V, \ell_A)</math>, в котором

  • V — множество вершин и A — множество дуг,
  • <math>\Sigma_V</math> и <math>\Sigma_A</math> — конечный алфавит, доступный для разметки дуг и вершин,
  • <math>s\colon A\rightarrow\ V</math> и <math>t\colon A\rightarrow\ V</math> — два отображения, определяющие начальную и конечную вершины дуги,
  • <math>\ell_V\colon V\rightarrow\Sigma_V</math> и <math>\ell_A\colon A\rightarrow\Sigma_A</math> — два отображения, описывающие разметку вершин и дуг.

Определение 2: Помеченный мультиорграф — помеченный орграф с кратными помеченными дугами, то есть дугами с теми же концами и теми же метками (это отличается от понятия, данного в статье «Разметка графа»).

См. также

Примечания

Шаблон:Примечания

Ссылки

Внешние ссылки

  • Paul E. Black, Multigraph at the NIST Dictionary of Algorithms and Data Structures.

Шаблон:Rq

  1. Например, смотрите Balakrishnan, стр. 1.
  2. Например, смотрите книги Болобаса (Bollobás), страница 7, или Дистеля (Diestel), страница 25.
  3. Шаблон:Книга