Русская Википедия:Начальные и граничные условия

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

В теории дифференциальных уравнений, начальные и граничные условия — дополнение к основному дифференциальному уравнению (обыкновенному или в частных производных), задающее его поведение в начальный момент времени или на границе рассматриваемой области соответственно.

Обычно дифференциальное уравнение имеет не одно решение, а целое их семейство. Начальные и граничные условия позволяют выбрать из него одно, соответствующее реальному физическому процессу или явлению. В теории обыкновенных дифференциальных уравнений доказана теорема существования и единственности решения задачи с начальным условием (т. н. задачи Коши). Для уравнений в частных производных получены некоторые теоремы существования и единственности решений для определённых классов начальных и краевых задач.

Терминология

Иногда к граничным относят и начальные условия в нестационарных задачах, таких как решение гиперболических или параболических уравнений.

Для стационарных задач существует разделение граничных условий на главные и естественные.

Главные условия обычно имеют вид <math>u(\partial \Omega) = g</math>, где <math>\partial \Omega</math> — граница области <math>\Omega</math>.

Естественные условия содержат также и производную решения по нормали к границе.

Пример

Уравнение <math>\frac{d^2 y}{dt^2}=-g</math> описывает движение тела в поле земного тяготения. Ему удовлетворяет любая квадратичная функция вида <math>y(t)=-gt^2/2+at+b,</math> где <math>a, b</math> — произвольные числа. Для выделения конкретного закона движения необходимо указать начальную координату тела и его скорость, то есть начальные условия.

Корректность постановки граничных условий

Шаблон:Anchor Задачи математической физики описывают реальные физические процессы, а потому их постановка должна удовлетворять следующим естественным требованиям:

  1. Решение должно существовать в каком-либо классе функций;
  2. Решение должно быть единственным в каком-либо классе функций;
  3. Решение должно непрерывно зависеть от данных (начальных и граничных условий, свободного члена, коэффициентов и т. д.).

Требование непрерывной зависимости решения обусловливается тем обстоятельством, что физические данные, как правило, определяются из эксперимента приближённо, и поэтому нужно быть уверенным в том, что решение задачи в рамках выбранной математической модели не будет существенно зависеть от погрешности измерений. Математически это требование можно записать, например, так (для независимости от свободного члена):

Пусть задано два дифференциальных уравнения: <math>Lu=F_1,~Lu=F_2</math> с одинаковыми дифференциальными операторами и одинаковыми граничными условиями, тогда их решения будут непрерывно зависеть от свободного члена, если:

<math>\forall \varepsilon>0~\exist\delta>0:~\left(\|F_1-F_2\|<\delta\right)\Rightarrow\left(\|u_1-u_2\|<\varepsilon\right)</math>, где <math>u_1</math>, <math>u_2</math>- решения соответствующих уравнений.

Множество функций, для которых выполняются перечисленные требования, называется классом корректности. Некорректную постановку граничных условий хорошо иллюстрирует пример Адамара.

См. также

Литература

Шаблон:Математическая физика