Русская Википедия:Нейтрофилы

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Клетка Нейтрофи́лы, или нейтрофи́льные гранулоци́ты, или нейтрофи́льные сегментоя́дерные гранулоци́тыШаблон:Sfn, или полиморфонуклеа́рные нейтрофи́лы[1], — наиболее многочисленная группа гранулоцитов, на долю которой приходится от 40 % до 70 % всех лейкоцитов у человека[2]. Нейтрофилы являются частью врождённого иммунитета[3], их основная функция — фагоцитоз патогенных микроорганизмов (бактерий, грибков, простейших) и продуктов распада тканей организмаШаблон:Sfn.

Нейтрофилы представляют собой очень подвижные клетки, которые проникают даже в те ткани, которые недоступны для других лейкоцитов. В зависимости от морфологии ядра нейтрофилы подразделяют на палочкоядерные (незрелые) и сегментоядерные (зрелые) нейтрофилы[4][5]. Развитие нейтрофилов находится под контролем цитокинов, прежде всего Шаблон:Нп5, а также GM-CSF, IL-3 и IL-6. В условиях воспалительного ответа количество нейтрофилов увеличивается под действием Шаблон:Нп5 и Шаблон:Нп5Шаблон:Sfn.

Нейтрофилы являются основными фагоцитами кровотока, но в ходе острого воспаления интенсивно мигрируют в очаг воспаления[6][7][8]. Они проникают через стенки кровеносных сосудов и движутся по градиенту различных провоспалительных молекул в ходе хемотаксиса[9]. Нейтрофилы — самые многочисленные клетки, входящие в состав гноя, именно они придают ему беловатый или желтоватый цвет[10].

Структура

Нейтрофилы — наиболее многочисленный подтип лейкоцитов у человека; каждый день в организме человека образуется порядка 1011 новых нейтрофилов. В норме количество нейтрофилов в литре крови составляет от 2—2,5 до 7,5 миллиардов клеток. У людей африканского и средневосточного происхождения количество нейтрофилов может быть меньше 2,5 миллиардов на литр[11]. В кровотоке находится лишь 1—2 % зрелых нейтрофилов, все остальные локализованы в тканях. Кроме того, в крови здорового человека присутствуют незрелые палочкоядерные нейтрофилы в количестве 0,04—0,3 × 109 на литр, что соответствует 1—6 % всех нейтрофиловШаблон:Sfn. У человека повышение содержания палочкоядерных нейтрофилов в крови свидетельствует об остром воспалении, лейкозе или повреждении костного мозга, однако у некоторых животных существенная доля незрелых нейтрофилов в крови является нормой[12].

В мазках крови нейтрофилы имеют диаметр от 12 до 15 мкм. В суспензии человеческие нейтрофилы достигают 7—9 мкм в диаметре[13]. Неактивированные нейтрофилы, плавающие в кровотоке, имеют сферическую форму; после активации форма нейтрофилов меняется, становится амёбоидной, появляются псевдоподии, с помощью которых нейтрофилы могут захватывать антигены[14].

На поверхности нейтрофилов присутствуют молекулы CD13, служащей рецептором для некоторых вирусов, CD14 (рецептор липополисахарида), β2-интегрины (LFA-1, Mac-1 и p155/95), Fc-рецепторы (Шаблон:Нп5 и CD16), Шаблон:Нп5 (Шаблон:Нп5, Mac-1, Шаблон:Нп5) и рецепторы факторов хемотаксиса. Нейтрофилы постоянно экспрессируют главный комплекс гистосовместимости I класса (Шаблон:Нп5), а под действием некоторых цитокинов, таких как GM-CSF, начинают экспрессировать Шаблон:Нп5. Нейтрофилы несут рецепторы для ключевых факторов, влияющих на их развитие, миграцию и активацию: G-CSF (главный регулятор развития нейтрофилов), IL-17 и IL-23, основного фактора хемотаксиса IL-8 (рецепторы CXCR1 и CXCR2), а также хемокина SDF-1, определяющего связь нейтрофилов с тканями (соответствующий ему рецептор известен как CXCR4)Шаблон:Sfn.

У человека выделяют пять групп антигенов нейтрофилов, которые обозначают HNA 1—5. Три антигена группы HNA-1 (a, b, c) располагаются на Fc-рецепторе CD16. Единственный антиген группы HNA-2, HNA-2a, входит в состав поверхностного гликопротеина CD177. Антигены группы HNA-3, a и b, входят в состав белка Шаблон:Нп5. Группы HNA-4 и HNA-5 содержат по два антигена, a и b, которые располагаются на интегрине β2[15].

Шаблон:Кратное изображение Подобно базофилам и эозинофилам, зрелые нейтрофилы имеют дольчатое клеточное ядро из 2—5 сегментов, соединённых тонкими перемычками. У некоторых животных ядро зрелых нейтрофилов не имеет отчётливой сегментации[12]. По мере созревания нейтрофила ядрышко исчезает (исчезновение ядрышка происходит лишь у некоторых типов дифференцированных клеток, имеющих ядро). Центр ядра составляет эухроматин, а гетерохроматин сосредоточен на периферии. У женщин некоторые нейтрофилы несут инактивированную X-хромосому в виде тельца Барра, которое выглядит как придаток в виде барабанной палочки у одного из сегментов ядраШаблон:SfnШаблон:Sfn. Поскольку промоторы многих генов в ядре нейтрофила недоступны для дифференцировочных факторов, экспрессия генов и возможность к биосинтезу макромолекул у нейтрофилов ограничены. Тем не менее нейтрофилы всё же сохраняют способность к биосинтезу, хотя и ограниченному. У незрелых палочкоядерных нейтрофилов ядро не подразделено на сегменты, хотя содержит уплотнённый хроматинШаблон:Sfn.

Аппарат Гольджи, как правило, слабо развит, митохондрии и рибосомы редки, шероховатый эндоплазматический ретикулум (ЭПР) отсутствует. В цитоплазме имеется от 50 до 200 гранул, из которых приблизительно 10—20 % (по некоторым оценкам, до трети) составляют азурофильные гранулы[16], оставшиеся 80—90 % приходится на специфические гранулы. Азурофильные гранулы окружены одинарной мембраной, они более крупные, чем специфические, и имеют диаметр около 0,4 мкм, окрашиваются в фиолетово-красный цвет. Они представляют собой первичные лизосомы, содержат электронно-плотную сердцевину и ферменты, активные при низких значениях pH: кислую фосфатазу, Шаблон:Нп5, миелопероксидазу, которая продуцирует из перекиси водорода молекулярный кислород, имеющий антибактериальные свойства, Шаблон:Нп5, Шаблон:Нп5, Шаблон:Нп5, β-галактозидазу, Шаблон:Нп5, Шаблон:Нп5, лизоцим, нейтральные протеазы (катепсин G, эластаза, коллагеназа, Шаблон:Нп5). Кроме того, азурофильные гранулы содержат антимикробные пептиды из числа дефензиновШаблон:Sfn, Шаблон:Нп5, гранулофизин, лактоферрин, кислые гликозаминогликаны. Поскольку в ходе дифференцировки нейтрофилов в костном мозге азурофильные гранулы появляются раньше специфических, их также называют первичными грануламиШаблон:Sfn. Шаблон:Нп5 азурофильных гранул — миелопероксидаза и мембранная молекула CD63Шаблон:Sfn.

Шаблон:Нп5, или вторичные гранулы — более мелкие (диаметр около 20 мкм), светлые, многочисленные. Они электронно-прозрачны, но иногда содержат кристаллоид. В специфических гранулах содержатся белки с Шаблон:Нп5 и бактерицидными свойствами — лизоцим, щелочную фосфатазу, лактоферринШаблон:Sfn, а также белок Шаблон:Нп5, связывающий витамин B12. В специфических гранулах в больших количествах содержится фермент NADPH-оксидаза, которая катализирует образование активных форм кислорода, выступающих в роли главных бактерицидных факторов фагоцитов. Кроме того, в состав специфических гранул входят разнообразные ферменты, разрушающие внеклеточный матрикс, такие как коллагеназыШаблон:Sfn. Молекулярными маркерами специфических гранул являются лактоферрин и мембранная молекула CD66Шаблон:Sfn.

Помимо первичных и вторичных гранул в нейтрофилах присутствуют третичные желатиназные и секреторные гранулы, или везикулы. Желатиназные гранулы содержат Шаблон:Нп5, также известную как матриксная металлопротеиназа 9 (MMP9). Они мельче специфических гранул и легче подвергаются экзоцитозу. В мембранах и специфических, и желатиназных гранул имеется флавоцитохром b558, который входит в состав NADPH-оксидазы. Секреторные везикулы содержат щелочную фосфатазуШаблон:Sfn и несут на своей поверхности Fc-рецептор CD16, рецепторы комплемента (в том числе CD35), а также интегрины CD11b/CD18, CD11c/CD18 и молекулы CD15 и CD14. После того как в ходе экзоцитоза мембрана секреторной везикулы встроится в клеточную мембрану нейтрофила, перечисленные рецепторы могут быть моментально использованы клеткой, что может резко изменить её фенотипШаблон:Sfn.

В таблице ниже перечислены основные компоненты мембран и матрикса гранул нейтрофиловШаблон:SfnШаблон:Sfn.

Компартмент гранулы Азурофильные (первичные) гранулы Специфические (вторичные) гранулы Желатиназные (третичные) гранулы Секреторные гранулы
Мембрана CD63, CD68 CD15, CD66, CD67, Шаблон:Нп5, CD120, b558 CD11b/CD18, FPR, b558 CD11b/CD18, CD13, CD14, CD16, FPR, CD35
Матрикс Шаблон:Нп5, катепсин G, эластаза, азуроцидин, лизоцим, BPI, α-дефензины Лизоцим, кателицидин, BPI, Шаблон:Нп5, лактоферрин, фосфолипаза A2, коллагеназа Желатиназа B Азуроцидин, альбумин, щелочная фосфатаза

Нейтрофилы содержат гликоген, и основную роль в получении энергии у нейтрофилов играет гликолиз. Цикл Кребса и окислительное фосфорилирование вносят меньший вклад в энергообеспечение нейтрофила, о чём свидетельствует небольшое количество митохондрий у данного типа клеток. Способность нейтрофилов выживать в анаэробных условиях очень важна для их функционирования, поскольку позволяет им убивать и фагоцитировать бактерии даже в бедных кислородом тканях, например, в повреждённых или некротизированных тканяхШаблон:Sfn.

Развитие

Файл:Hematopoiesis (human) diagram ru.svg
Схема гемопоэза

Нейтрофилы образуются в костном мозге из гемопоэтических стволовых клеток. Гемопоэтическая стволовая клетка даёт начало Шаблон:Нп5 клетке — родоначальнице гранулоцитарного, эритроцитарного, моноцитарного и мегакариоцитарного рядов гемопоэза, которая, в свою очередь, дает начало олигопотентной клетке-предшественнице моноцитов и нейтрофилов. От неё происходит унипотентная клетка-предшественница нейтрофилов, дающая начало миелобластам. Композиция её поверхностных маркеров описывается как CD34+CD33+, а также рецепторы для GM-CSF, G-CSF, IL-1, IL-3, IL-6, Шаблон:Нп5, IL-12Шаблон:Sfn. Далее последовательность клеток-предшественников выглядит следующим образом: миелобласт → промиелоцит → нейтрофильный миелоцитметамиелоцит → палочкоядерный нейтрофил → сегментоядерный нейтрофил. Первичные гранулы появляются на стадии промиелоцитов, вторичные — на стадии миелоцитов. До стадии метамиелоцитов предшественники делятся митозом, а метамиелоциты и последующие стадии лишены способности к делению. На стадии метамиелоцитов увеличивается количество специфических гранул в цитоплазме, дальнейшее созревание ядра приводит появлению палочкоядерных нейтрофилов. Сегментация ядра палочкоядерных нейтрофилов приводит к их преобразованию в зрелые сегментоядерные нейтрофилы. Полный период развития нейтрофилов у человека составляет около 14 суток, из которых 7,5 суток приходятся на пролиферацию, а 6,5 — на постмитотическую дифференцировкуШаблон:Sfn. У взрослого человека за сутки из костного мозга в кровь выходит от 5 × 1010 до 1011 зрелых нейтрофилов[1].

Срок жизни неактивированного нейтрофила в кровотоке составляет, по разным оценкам, от 5 до 135 часов[17][18]. При активации нейтрофилы приобретают способность протискиваться через эндотелий сосудов и мигрируют в ткани, где они живут от одного до двух дней. Около 30 % нейтрофилов, покидающих кровоток, мигрируют в костный мозг и печень, 20 % направляются в лёгкие, 15 % — в селезёнку. Главные факторы хемотаксиса нейтрофилов, направляющие их перемещение в ткани, — лейкотриен B4 и IL-8. В процессе миграции нейтрофилов участвуют молекулы адгезии, а именно, β2-интегрины, P- и E-селектины, а также секретируемый нейтрофилами фермент Шаблон:Нп5. Нейтрофилы гораздо многочисленнее долгоживущих макрофагов, и патоген, проникнувший в организм, прежде всего сталкивается именно с нейтрофилами. Через 3—5 суток пребывания в тканях нейтрофилы подвергаются апоптозу и поглощаются резидентными макрофагами. Некоторые исследователи считают, что короткий срок жизни нейтрофилов является эволюционной адаптацией. Со смертью фагоцита погибают патогены, сохраняющиеся в нём, что защищает организм. Кроме того, ввиду высокой токсичности веществ, выделяемых нейтрофилами для борьбы с инфекцией, по отношению к тканям организма, быстрая гибель нейтрофилов обеспечивает действие противомикробных веществ только в очаге воспаления и защищает остальные ткани организма[19]Шаблон:Sfn. Существуют сведения, указывающие на возможность перехода нейтрофилов в тканях в долгоживущую форму и даже в макрофагиШаблон:Sfn.

Функции

Файл:NeutrophilerAktion.svg
Схема миграции нейтрофила из сосуда в воспалённую ткань

Воспалённые или повреждённые участки соединительной ткани требуют немедленной миграции разнообразных лейкоцитов, в том числе нейтрофилов, в очаг повреждения для удаления патогенных микроорганизмов и восстановления ткани. Наиболее хорошо процесс миграции в ткани изучен для нейтрофилов, которые прибывают в очаг воспаления первыми, существенно быстрее моноцитов, и способны развивать защитные метаболические реакции (в частности, «Шаблон:Нп5», сопровождающийся продукцией активных форм кислорода) в течение секунд. Активация нейтрофилов сопровождается в первую очередь высвобождением содержимого секреторных гранул. При развитии локального воспаления макрофаги, активированные бактериями или повреждениями ткани, выделяют Шаблон:Нп5, такие как IL-1 или фактор некроза опухоли α (TNF-α). Также к факторам хемотаксиса нейтрофилов относят компоненты комплемента, вещества, выделяемые тучными клетками, Шаблон:Нп5, эндотоксины и бактериальные пептиды, а также наполненные лизосомы, выходящие в ткань при распаде погибших нейтрофилов и макрофаговШаблон:Sfn. Под действием провоспалительных цитокинов в эндотелиальных клетках, выстилающих ближайшие к очагу воспаления посткапиллярные венулы, увеличивается количество селектинов на поверхности, обращённой в просвет сосуда. Нейтрофилы, циркулирующие в посткапиллярных венулах и имеющие подходящий набор поверхностных гликопротеинов, связываются с селектинами на поверхности эндотелиальных клеток. На данном этапе связывание с эндотелием непрочное, и нейтрофилы продолжают «катиться» по поверхности эндотелия. Провоспалительные цитокины запускают экспрессию интегринов в катящихся нейтрофилах и лигандов интегринов, известных как ICAM-1, на поверхностях эндотелиальных клеток. В то же время межклеточные контакты между клетками эндотелия ослабляются, и эндотелий становится более проницаемым. За счёт интегринов нейтрофилы прочно связываются с эндотелием и прекращают качение, и в конечном счёте приступают к прохождению через эндотелий с помощью псевдоподий (этот процесс известен как диапедез). Проникновение нейтрофилов через эндотелий облегчается благодаря длинному и сегментированному ядру. Прохождение нейтрофилов через эндотелий и дальнейшая миграция к очагу воспаления стимулируются хемокинамиШаблон:Sfn. Базальные мембраны нейтрофилы преодолевают благодаря выделению содержимого желатиназных гранулШаблон:Sfn.

Координированное перемещение нейтрофилов в очаг острого воспаления называют Шаблон:Нп5[20]. Масштаб роения и его длительность определяются многими факторами, среди которых размер повреждённой области ткани и наличие патогенов[21]. Явление роения нейтрофилов было изучено преимущественно у мышей на ткани уха[22] и у рыбок данио-рерио[23].

Файл:Neutrophil with anthrax copy.jpg
Нейтрофил поглощает бациллу сибирской язвы. Сканирующая электронная микроскопия, масштабная линейка 5 мкм

Активированные нейтрофилы при встрече с микроорганизмами поглощают их с помощью псевдоподий, и микроорганизм оказывается внутри фагосомы. В течение нескольких секунд после активации нейтрофила изменяется его мембранный потенциал, в клетку входят ионы натрия и кальция, изменяется Шаблон:Нп5Шаблон:Sfn. Примерно через 30 секунд после поглощения частицы специфические гранулы сливаются с фагосомой, изливая в неё своё содержимое, после чего фагосома дополнительно закисляется с помощью мембранных протонных помп. С закисленными фагосомами сливаются азурофильные гранулы (примерно через 1—3 минуты после поглощения частицы). В ходе фагоцитоза в нейтрофиле образуются активные формы кислорода, такие как супероксид-анион и перекись водорода, и другие компоненты гранул с бактерицидными свойствами. Активные формы кислорода используются для уничтожения бактериальной клетки, наряду с содержимым специфических и азурофильных гранул. Белок лактоферрин, входящий в состав специфических гранул, не убивает бактерию напрямую, а прочно связывает ионы железа, делая их недоступными для бактерии и, в результате, приводя к её смерти. Содержимое гранул (в частности, азурофильных) может высвобождаться в ходе Шаблон:Нп5, после которой восстановления гранул не происходит. Комбинация описанных механизмов способна убить практически любую бактерию, и погибшие бактериальные клетки впоследствии расщепляются лизосомными ферментами. Наиболее чувствительны к компонентам гранул нейтрофилов дрожжи (Candida) и бактерии из числа стрептококков и стафилококков. Нейтрофилы, погибшие апоптозом, бактерии, полуразрушенные останки клеток и тканевая жидкость формируют густой гной белого или жёлтого цветаШаблон:SfnШаблон:Sfn.

Файл:NETosis.jpg
Схема нетоза

Ещё одна форма противомикробной активности нейтрофилов заключается в особом типе программируемой клеточной гибели, характерном для нейтрофилов, — нетозе[24]. При нетозе погибающий нейтрофил выбрасывает свою ДНК наружу в виде так называемых внеклеточных ловушек нейтрофилов (от Шаблон:Lang-en). Внеклеточные ловушки нейтрофилов состоят из хроматина и сериновых протеаз и способны иммобилизовать и убивать микробные клетки[25]. Таким образом, внеклеточные ловушки нейтрофилов также противодействуют распространению клеток патогенов по тканям. При сепсисе массовый нетоз происходит непосредственно в кровеносных сосудах[26]. Образование внеклеточных ловушек нейтрофилов может вносить вклад в развитие ряда воспалительных заболеваний, таких как преэклампсия[27], а их образование в кровеносных сосудов может приводить к формированию тромбов, в том числе в коронарных артериях[28][29]. В 2018 году было показано, что один и тот же нейтрофил может подвергаться и апоптозу, и нетозу одновременно; этот вид программируемой клеточной гибели нейтрофилов получил название апонетоз[30].

Многие исследователи выделяют две функционально различные субпопуляции нейтрофилов на основании различных интенсивности образования активных форм кислорода, проницаемости мембраны, активности ферментов гранул и способности к инактивации. Нейтрофилы с повышенной проницаемостью мембран называют нейтрофилами-киллерами. Нейтрофилы-киллеры интенсивно генерируют активные формы кислорода и инактивируются после взаимодействия с субстратом. Нейтрофилы второй субпопуляции образуют активные формы кислорода менее интенсивно, не прикрепляются к субстрату и не инактивируются[31][32][33][34].

Активность нейтрофилов зависит от возраста организма человека. У новорождённого нет адекватной продукции нейтрофилов, а в старческом возрасте способность нейтрофилов к фагоцитозу ограниченаШаблон:Sfn.

Нейтрофилы экспрессируют и продуцируют широкий спектр цитокинов, среди которых хемокины, Шаблон:Нп5, провоспалительные цитокины (IL-1α, IL-1β, IL-6, IL-7, IL-18, Шаблон:Нп5 и другие), иммунорегуляторные цитокины (IL-12, Шаблон:Нп5, Шаблон:Нп5, Шаблон:Нп5, Шаблон:Нп5 и другие), противовспалительные цитокины (IL-1ra, TGFβ1, Шаблон:Нп5), факторы ангиогенеза и фиброгенеза (VEGF, BV8, Шаблон:Нп5, Шаблон:Нп5, Шаблон:Нп5, Шаблон:Нп5, ангиопоэтин), цитокины суперсемейства фактора некроза опухоли (TNF) и некоторые другие цитокины, такие как PBEF, Шаблон:Нп5, мидкин, Шаблон:Нп5, Шаблон:Нп5, эндотелин. За счёт выделения разнообразных цитокинов нейтрофилы могут быть вовлечены в процессы, не связанные с иммунной защитой, такие как гемопоэз, ангиогенез и заживление ран. Кроме того, нейтрофилы могут участвовать в развитии некоторых аутоиммунных и злокачественных заболеваний[35].

Иммуносупрессорные популяции нейтрофилов задействованы в поддержании иммунологической толерантности при беременности. В частности, иммуносупрессорные нейтрофилы низкой плотности могут подавлять пролиферацию CD4+ и CD8+ T-лимфоцитов, подвергая их воздействию активных форм кислорода. Кроме того, они подавляют цитотоксическую активность естественных киллеров и экспрессию Toll-подобных рецепторов на моноцитах. Нейтрофилы, располагающиеся в Шаблон:Нп5 во время второго триместра беременности, стимулируют в ней дополнительный ангиогенез[36].

Клиническое значение

Файл:Neutropenia.JPG
Мазок крови пациента с нейтропенией, на котором почти отсутствуют нейтрофилы

Состояние, при котором количество нейтрофилов снижено, называется Шаблон:Нп5. Нейтропения может быть наследственной или приобретённой, как при некоторых видах апластической анемии или лейкозов. Нейтропения может развиться вследствие приёма определённых препаратов, в частности, противораковой химиотерапии. Пациенты с нейтропенией отличаются повышенной уязвимостью к инфекционным заболеваниям бактериальной и грибковой природы. Чаще всего пациенты с нейтропенией страдают от таких заболеваний, как воспаление подкожной жировой клетчатки, фурункулёз, пневмония и септицемия[37]. Степень нейтропении определяют с помощью параметра, известного как Шаблон:Нп5 (Шаблон:Lang-en). Состояние с ANC < 1500 клеток / мм³ считается нейтропенией, а с ANC < 500 клеток / мм³ — тяжёлой нейтропенией[38].

Файл:Neutrophils -1.jpg
Массовая миграция нейтрофилов в ткань при остром воспалении

Состояние, противоположное нейтропении, при котором количество нейтрофилов в крови повышено, называют нейтрофилией. Наиболее частой причиной нейтрофилии являются бактериальные инфекции, особенно сопровождающиеся гнойным воспалением[39]. Повышение уровня нейтрофилов происходит при любом остром воспалении, поэтому нейтрофилия может появиться в результате инфаркта миокарда или ожога[39], а также аппендицита и спленэктомии. Уровень нейтрофилов может повышаться при некоторых злокачественных заболеваниях крови, таких как хронический миелоидный лейкоз, при котором происходит неконтролируемая пролиферация лейкоцитов[40].

Нейтрофилы, будучи иммунными клетками, принимают участие во взаимодействии с клетками опухолей. Нейтрофилы, инфильтрованные в опухоль, имеют повышенную, по сравнению с нейтрофилами в обычных тканях, продолжительность жизни. Нейтрофилы могут играть ведущую роль в онкогенезе за счёт взаимодействия с другими иммунными клетками, реагирующими на появление и рост опухоли. Нейтрофилы могут стимулировать пролиферацию опухолевых клеток и ангиогенез в опухоли, активировать метастазирование и подавлять иммунный ответ на злокачественные клетки. В то же время нейтрофилы могут обладать и противоопухолевой активностью[1].

Известно несколько наследственных расстройств, связанных с дисфункцией нейтрофилов. В некоторых случаях подвижность нейтрофилов снижена за счёт нарушений в полимеризации актина, а при недостаточной экспрессии гена, кодирующего NADPH-оксидазу, нейтрофилы теряют способность вырабатывать перекись водорода и гипохлорит, что уменьшает их противомикробные свойства. Дети, страдающие от таких наследственных нарушений, сильнее подвержены бактериальным инфекциямШаблон:Sfn. Наследственная Шаблон:Нп5, связанная с мутациями в гене, кодирующем миелопероксидазу, рассматривается как первичный иммунодефицит[41].

Недостаточная или избыточная активность ряда белков, входящих в состав гранул нейтрофилов, приводит к болезненным состояниям. При наследственной болезни, известной как Шаблон:Нп5, эластаза в составе гранул нейтрофилов недостаточно ингибируется Шаблон:Нп5, что приводит к сильнейшим повреждениям тканей при воспалительных процессах, в частности, при хронической обструктивной болезни лёгких. Повышенная активность эластазы нейтрофилов может привести к разрушению лёгочного барьера и острому респираторному дистресс-синдрому[42]. Эластаза нейтрофилов влияет на активность макрофагов, разрушая их Toll-подобные рецепторы и подавляя синтез цитокинов через ингибирование перемещения в ядро транскрипционного фактора NF-κB[43]. При периодической болезни мутации в гене Шаблон:Нп5, кодирующем белок пирин, экспрессирующийся преимущественно в нейтрофилах, могут привести к хроническому острому воспалению, что выражается в лихорадке, артралгии, перитоните и, в конце концов, может стать причиной амилоидоза[44]. Имеются данные о связи сниженной активности нейтрофилов, связанной с нарушениями активности миелопероксидазы и дегрануляции, с гипергликемией[45].

Нейтрофилы связаны с развитием многих хронических воспалительных заболеваний, в том числе аутоиммунных. Они поддерживают хроническое воспаление при системной красной волчанке, псориазе, Шаблон:Нп5, АНЦА-ассоциированном системном васкулите, связанном с образованием аутоантител к компонентам цитоплазмы нейтрофилов, ревматоидном артрите, идиопатическом юношеском артрите и Шаблон:Нп5 (от Шаблон:Lang-en)[36].

История изучения

Файл:Paul Ehrlich 1915.jpg
Пауль Эрлих

Впервые нейтрофилы описал французский исследователь Жан-Батист Сенак, который в 1749 году обнаружил белые клетки в гное. В 1843 году английский врач Шаблон:Нп5 заметил, что белые клетки в составе гноя происходят от лейкоцитов, которые просочились через кровеносные сосуды. В 1845 году английский врач и физиолог Шаблон:Нп5 сообщил, что лейкоз обусловлен накоплением белого гноя в кровеносных сосудах, но уже в 1847 году это представление было опровергнуто Рудольфом Вирховым, который показал, что патологические клетки при лейкозе происходят не из гноя, а из самой крови. Первое точное морфологическое описание различных гранулоцитов, в том числе и нейтрофилов, было выполнено Максом Шульце в 1865 году. Кроме морфологических описаний гранулоцитов, Шульце описал и фагоцитоз[46]. Кроме того, в 1876 году фагоцитоз был отмечен Уильямом Ослером[47]

Фагоцитоз был детально изучен и назван Ильёй Ильичом Мечниковым в 1882 году, когда им же была установлена роль фагоцитов в защите от бактерий[48]. В 1879—1880 годах Пауль Эрлих опубликовал несколько работ, в которых детально описал морфологию белых клеток крови. Окрашивание кислыми и щелочными красителями позволило ему выявить соответственно эозинофилы и базофилы, а также тучные клетки. Впоследствии с помощью окрашивания нейтральными красителями он визуализировал сегментоядерные нейтрофилы и их гранулы (за что нейтрофилы и получили своё название). Первоначально Эрлих назвал нейтрофилы «клетками с полиморфными ядрами». Также он описал некоторые аспекты появления, функционирования и дальнейшей судьбы эозинофилов и нейтрофилов[46]. В 1908 году Пауль Эрлих и Илья Мечников разделили Нобелевскую премию по физиологии и медицине[49].

Примечания

Шаблон:Примечания

Литература

Шаблон:ВС Шаблон:Кровь Шаблон:Иммунная система

Шаблон:Избранная статья