Шаблон:Значения2
Неравенство Чебышёва для сумм, носящее имя Пафнутия Львовича Чебышёва, утверждает, что если
- <math>a_1 \geqslant a_2 \geqslant \cdots \geqslant a_n</math>
и
- <math>b_1 \geqslant b_2 \geqslant \cdots \geqslant b_n,</math>
то
- <math>{1\over n} \sum_{k=1}^n a_kb_k \geqslant \left({1\over n}\sum_{k=1}^n a_k\right)\left({1\over n}\sum_{k=1}^n b_k\right).</math>
Аналогично, если
- <math>a_1 \geqslant a_2 \geqslant \cdots \geqslant a_n</math>
и
- <math>b_1 \leqslant b_2 \leqslant \cdots \leqslant b_n,</math>
то
- <math>{1\over n} \sum_{k=1}^n a_kb_k \leqslant \left({1\over n}\sum_{k=1}^n a_k\right)\left({1\over n}\sum_{k=1}^n b_k\right).</math>
Доказательство
Неравенство Чебышёва для сумм легко выводится из перестановочного неравенства:
Предположим, что
- <math>a_1 \geqslant a_2 \geqslant \cdots \geqslant a_n</math>
и
- <math>b_1 \geqslant b_2 \geqslant \cdots \geqslant b_n.</math>
В виду перестановочного неравенства выражение
- <math>a_1 b_1 + \cdots + a_n b_n</math>
является максимально возможным значением скалярного произведения рассматриваемых последовательностей. Суммируя неравенства
- <math>a_1 b_1 + \cdots + a_n b_n = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n</math>
- <math>a_1 b_1 + \cdots + a_n b_n \geqslant a_1 b_2 + a_2 b_3 + \cdots + a_n b_1</math>
- <math>a_1 b_1 + \cdots + a_n b_n \geqslant a_1 b_3 + a_2 b_4 + \cdots + a_n b_2</math>
- <math>\vdots</math>
- <math>a_1 b_1 + \cdots + a_n b_n \geqslant a_1 b_n + a_2 b_1 + \cdots + a_n b_{n-1}</math>
получаем
- <math>n (a_1 b_1 + \cdots + a_n b_n) \geqslant (a_1 + \cdots + a_n) (b_1 + \cdots + b_n);</math>
или, разделив на <math>n^2</math>:
- <math>\frac {(a_1 b_1 + \cdots + a_n b_n)} {n} \geqslant \frac {(a_1 + \cdots + a_n)}{n} \cdot \frac {(b_1 + \cdots + b_n)}{n}.</math>
Непрерывный случай
Существует также непрерывный аналог неравенства Чебышёва для сумм:
Если f(x) и g(x) — это вещественные интегрируемые на [0,1] функции, возрастающие или убывающие одновременно, то
- <math> \int\limits_0^1 f(x)g(x)\,dx \geqslant \int\limits_0^1 f(x)\,dx \int\limits_0^1 g(x)\,dx.</math>
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|