Русская Википедия:Оксид серы(IV)

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Другие значения Шаблон:Вещество Окси́д се́ры(IV) (диокси́д се́ры, двуокись серы, серни́стый газ, серни́стый ангидри́д) — соединение серы с кислородом состава Шаблон:Химическая формула. В нормальных условиях представляет собой бесцветный газ с характерным резким запахом (запах загорающейся спички). В высоких концентрациях токсичен. Под давлением сжижается при комнатной температуре. Растворяется в воде с образованием нестойкой серни́стой кислоты; растворимость 11,5 г/100 г воды при 20 °C, снижается с ростом температуры. Растворяется также в этаноле и се́рной кислоте. Один из основных компонентов вулканических газов. Зарегистрирован в качестве пищевой добавки с номером Е220.

Получение

Промышленный способ получения — сжигание серы или обжиг сульфидов, в основном — пирита.

В лабораторных условиях и в природе SO2 получают воздействием сильных кислот на сульфиты и гидросульфиты. Образующаяся сернистая кислота HШаблон:SubSOШаблон:Sub сразу разлагается на SO2 и H2O:

<math>\mathsf{Na_2SO_3 + H_2SO_4 \rightarrow Na_2SO_4 + H_2SO_3},</math>
<math>\mathsf{H_2SO_3 \rightarrow H_2O + SO_2\uparrow}.</math>

Химические свойства

Файл:Спектр поглощения SO2 в ультрафиолетовом диапазоне.jpg
Спектр поглощения SO2 в ультрафиолетовом диапазоне

Относится к кислотным оксидам. Растворяется в воде с образованием сернистой кислоты (при обычных условиях реакция обратима):

<math>\mathsf{SO_2 + H_2O \rightleftarrows H_2SO_3}.</math>

С щелочами образует сульфиты:

<math>\mathsf{2NaOH + SO_2 \rightarrow Na_2SO_3 + H_2O}.</math>

Химическая активность SO2 весьма велика. Наиболее ярко выражены восстановительные свойства SO2, степень окисления серы в таких реакциях повышается:

<math>\mathsf{SO_2 + Br_2 + 2H_2O \rightarrow H_2SO_4 + 2HBr},</math>
<math>\mathsf{SO_2 + Cl_2 + 2H_2O \longrightarrow H_2SO_4 + 2HCl},</math>
<math>\mathsf{SO_2 + I_2 + 2H_2O \rightarrow H_2SO_4 + 2HI},</math>
<math>\mathsf{2SO_2 + O_2 \xrightarrow[Pt]{450^oC} 2SO_3},</math>
<math>\mathsf{2SO_2 + 2H_2O + O_2 \ \xrightarrow {+70^oC, p, CuSO_4}\ 2H_2SO_4}</math>
<math>\mathsf{5SO_2 + 2KMnO_4 + 2H_2O \rightarrow 2H_2SO_4 + 2MnSO_4 + K_2SO_4},</math>
<math>\mathsf{Fe_2(SO_4)_3 + SO_2 + 2H_2O \rightarrow 2FeSO_4 + 2H_2SO_4}.</math>

Предпоследняя реакция является качественной реакцией на сульфит-ион SO32− и на SO2 (обесцвечивание фиолетового раствора).

В присутствии сильных восстановителей SO2 способен проявлять окислительные свойства. Например, для извлечения серы из отходящих газов металлургической промышленности используют восстановление SO2 оксидом углерода(II):

<math>\mathsf{SO_2 + 2CO \rightarrow 2CO_2 + S}.</math>

Или для получения фосфорноватистой кислоты:

<math>\mathsf{PH_3 + SO_2 \rightarrow HP(OH)_2 + S}.</math>

Применение

Большая часть оксида серы(IV) используется для производства сернистой кислоты. Используется также в виноделии в качестве консерванта (пищевая добавка E220). Газ убивает микроорганизмы, поэтому им окуривают овощехранилища и склады. Оксид серы(IV) используется для отбеливания соломы, шёлка и шерсти, то есть материалов, которые нельзя отбеливать хлором. Применяется он также и в качестве растворителя в лабораториях[1]. Оксид серы(IV) применяется также для получения различных солей сернистой кислоты.

Токсичность и безопасность

Оксид серы(IV) SO2 (диоксид серы) в высоких дозах очень токсичен. Симптомы при отравлении сернистым газом — насморк, кашель, охриплость, сильное першение в горле и своеобразный привкус. При вдыхании сернистого газа более высокой концентрации — удушье, расстройство речи, затруднение глотания, рвота, возможен острый отёк лёгких.

При кратковременном вдыхании оказывает сильное раздражающее действие, вызывает кашель и першение в горле.

ПДК (предельно допустимая концентрация):

  • в атмосферном воздухе максимально-разовая — 0,5 мг/м³, среднесуточная — 0,05 мг/м³;
  • в помещении (рабочая зона) — 10 мг/м³.

По степени воздействия на человеческий организм сернистый ангидрид относится к III классу опасности («умеренно-опасное химическое вещество») согласно ГОСТ 12.1.007-76.

Интересно, что чувствительность по отношению к SO2 весьма различна у отдельных людей, животных и растений. Так, среди растений наиболее устойчивы по отношению к сернистому газу берёза и дуб, наименее — роза, сосна и ель.

По данным исследования[2] средний порог восприятия запаха может превышать ПДК (21 мг/м3), а у части людей порог был значительно выше среднего значения.

В качестве пищевой добавки оксид серы признан безопасным для потребления, однако у астматиков он может вызвать аллергические реакции[3]. Уровень, не вызывающий видимых отрицательных эффектов (УНВОЭ) составляет 70 мг/кг массы тела у животных, допустимое суточное потребление (ДСП) составляет 0,7 мг/кг массы тела человека, по данным Европейского агентства по безопасности продуктов питания (EFSA)[3]. Это количество совпадает с мнением Объединённого экспертного комитета ФАО/ВОЗ по пищевым добавкам (JECFA), установившего аналогичный уровень ДСП в 1998 году[4].

Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) в США признаёт оксид серы как «общепризнанную безопасную» (GRAS) пищевую добавку, за исключением его использования в продуктах, признанных источником витамина B1 (тиамина), поскольку оксид серы (наряду с добавками Е220-Е228, выделяющими оксид серы) разлагает этот микронутриент и его использование в перечне богатых витамином B1 продуктов, а также во фруктах и овощах запрещено[5].

Биологическая роль

Роль эндогенного сернистого газа в физиологии организма млекопитающих ещё окончательно не выяснена[6]. Сернистый газ блокирует нервные импульсы от рецепторов растяжения лёгких и устраняет рефлекс, возникающий в ответ на перерастяжение лёгких, стимулируя тем самым более глубокое дыхание.

Показано, что эндогенный сернистый газ играет роль в предотвращении повреждения лёгких, уменьшает образование свободных радикалов, оксидативный стресс и воспаление в лёгочной ткани, в то время как экспериментальное повреждение лёгких, вызываемое олеиновой кислотой, сопровождается, наоборот, снижением образования сернистого газа и активности опосредуемых им внутриклеточных путей и повышением образования свободных радикалов и уровня оксидативного стресса. Что ещё более важно, блокада фермента, способствующего образованию эндогенного сернистого газа, в эксперименте способствовала усилению повреждения лёгких, оксидативного стресса и воспаления и активации апоптоза клеток лёгочной ткани. И напротив, обогащение организма подопытных животных серосодержащими соединениями, такими, как глютатион и ацетилцистеин, служащими источниками эндогенного сернистого газа, приводило не только к повышению содержания эндогенного сернистого газа, но и к уменьшению образования свободных радикалов, оксидативного стресса, воспаления и апоптоза клеток лёгочной ткани[7].

Считают, что эндогенный сернистый газ играет важную физиологическую роль в регуляции функций сердечно-сосудистой системы, а нарушения в его метаболизме могут играть важную роль в развитии таких патологических состояний, как лёгочная гипертензия, гипертоническая болезнь, атеросклероз сосудов, ишемическая болезнь сердца, ишемия-реперфузия и др.[8].

Показано, что у детей с врождёнными пороками сердца и лёгочной гипертензией повышен уровень гомоцистеина (вредного токсичного метаболита цистеина) и снижен уровень эндогенного сернистого газа, причём степень повышения уровня гомоцистеина и степень снижения выработки эндогенного сернистого газа коррелировала со степенью выраженности лёгочной гипертензии. Предложено использовать гомоцистеин как маркер степени тяжести состояния этих больных и указано, что метаболизм эндогенного сернистого газа может быть важной терапевтической мишенью у этих больных[9].

Также показано, что эндогенный сернистый газ понижает пролиферативную активность клеток гладких мышц эндотелия сосудов, угнетая активность MAPK-сигнального пути и одновременно активируя аденилатциклазный путь и протеинкиназу A[10]. А пролиферация гладкомышечных клеток стенок сосудов считается одним из механизмов гипертензивного ремоделирования сосудов и важным звеном патогенеза артериальной гипертензии, а также играет роль в развитии стеноза (сужения просвета) сосудов, предрасполагающего к развитию в них атеросклеротических бляшек.

Эндогенный сернистый газ оказывает эндотелий-зависимое вазодилатирующее действие в низких концентрациях, а в более высоких концентрациях становится эндотелий-независимым вазодилататором, а также оказывает отрицательное инотропное действие на миокард (понижает сократительную функцию и сердечный выброс, способствуя снижению артериального давления). Этот вазодилатирующий эффект сернистого газа опосредуется через АТФ-чувствительные кальциевые каналы и кальциевые каналы L-типа («дигидропиридиновые»). В патофизиологических условиях эндогенный сернистый газ оказывает противовоспалительное действие и повышает антиоксидантный резерв крови и тканей, например при экспериментальной лёгочной гипертензии у крыс. Эндогенный сернистый газ также снижает повышенное артериальное давление и тормозит гипертензивное ремоделирование сосудов у крыс в экспериментальных моделях гипертонической болезни и лёгочной гипертензии. Последние (на 2015 год) исследования показывают также, что эндогенный сернистый газ вовлечён в регуляцию липидного метаболизма и в процессы ишемии-реперфузии[11].

Эндогенный сернистый газ также уменьшает повреждение миокарда, вызванное экспериментальной гиперстимуляцией адренорецепторов изопротеренолом, и повышает антиоксидантный резерв миокарда[12].

Воздействие на атмосферу

Шаблон:Main Из-за образования в больших количествах в качестве отходов диоксид серы является одним из основных газов, загрязняющих атмосферу.

Наибольшую опасность представляет собой загрязнение соединениями серы, которые выбрасываются в атмосферу при сжигании угольного топлива, нефти и природного газа, а также при выплавке металлов и производстве серной кислоты.

Антропогенное загрязнение серой в два раза превосходит природное[13][14]. Серный ангидрид образуется при постепенном окислении сернистого ангидрида кислородом воздуха с участием света. Конечным продуктом реакции является аэрозоль серной кислоты в воздухе, раствор в дождевой воде (в облаках). Выпадая с осадками, она подкисляет почву, обостряет заболевания дыхательных путей, скрыто угнетающе воздействует на здоровье человека. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий чаще отмечается при низкой облачности и высокой влажности воздуха. Растения около таких предприятий обычно бывают густо усеяны мелкими некротическими пятнами, образовавшимися в местах оседания капель серной кислоты, что доказывает присутствие её в окружающей среде в существенных количествах. Пирометаллургические предприятия цветной и чёрной металлургии, а также ТЭЦ ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида.

Необходимо отметить также, что диоксид серы имеет максимум в спектре поглощения света в ультрафиолетовой области (190—220 нм), что совпадает с максимумом в спектре поглощения озона. Это свойство диоксида серы позволяет утверждать, что наличие этого газа в атмосфере имеет также положительный эффект, предотвращая возникновение и развитие онкологических заболеваний кожи человека. Диоксид серы в атмосфере Земли существенно ослабляет влияние парниковых газов (диоксид углерода, метан) на рост температуры атмосферы[15].

Наибольших концентраций сернистый газ достигает в северном полушарии, особенно над территорией США, Европы, Китая, европейской части России и Украины. В южном полушарии содержание его значительно ниже[16].

Примечания

Шаблон:Примечания

Литература

Ссылки

Шаблон:ВС Шаблон:Оксиды серы Шаблон:Оксиды