Русская Википедия:Оператор Д’Аламбера

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Оператор Д’Аламбера (оператор Даламбера, волновой оператор, даламбертиан) — дифференциальный оператор второго порядка

<math>\square u := \Delta u-\frac{1}{c^2}\frac{\partial^2u}{\partial t^2},</math>

где <math>\Delta</math> — оператор Лапласа, <math>c</math> — постоянная. Иногда оператор пишется с противоположным знаком.

Имеет в декартовых координатах вид:

<math>\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}+\frac{\partial^2 u}{\partial z^2}-\frac{1}{c^2}\frac{\partial^2 u}{\partial t^2},</math>

позволяющий прямое обобщение на любую конечную размерность пространства, как больше, так и меньше трёх (такое обобщение носит также название оператора Д’Аламбера, с добавлением, если это не ясно из контекста, «<math>n</math>-мерный»).


В случае вектора оператор Даламбера приобретает вид:

<math>\square \mathbf{A} := \Delta \mathbf{A}-\frac{1}{c^2}\frac{\partial^2 \mathbf{A}}{\partial t^2}

</math>[1], где <math>\mathbf{A} </math> - вектор, <math>\mathbf{A} =

A_x \mathbf i +  A_y \mathbf j + 
A_z \mathbf k</math>

<math>\square \mathbf{A} :=

\Delta A_{x}\mathbf {i} +\Delta A_{y}\mathbf {j} +\Delta A_{z}\mathbf {k} - \frac{1}{c^2}\frac{\partial^2 }{\partial t^2} (A_{x}\mathbf {i} + A_{y}\mathbf {j} + A_{z}\mathbf {k})

</math>

<math>\square \mathbf{A} :=

\biggl(\frac{\partial^2 A_x}{\partial x^2} +\frac{\partial^2 A_x}{\partial y^2} +\frac{\partial^2 A_x}{\partial z^2}\Biggr)\mathbf i+ \biggl(\frac{\partial^2 A_y}{\partial x^2} +\frac{\partial^2 A_y}{\partial y^2} +\frac{\partial^2 A_y}{\partial z^2}\Biggr)\mathbf j+ \biggl(\frac{\partial^2 A_z}{\partial x^2} +\frac{\partial^2 A_z}{\partial y^2} +\frac{\partial^2 A_z}{\partial z^2}\Biggr)\mathbf k - \frac{1}{c^2}\frac{\partial^2 }{\partial t^2} (A_{x}\mathbf {i} + A_{y}\mathbf {j} + A_{z}\mathbf {k})

</math>

Назван по имени Ж. Д’Аламбера (J. D’Alembert, 1747), который рассматривал его простейший вид при решении одномерного волнового уравнения.

Применяется в электродинамике, акустике и других задачах распространения волн (преимущественно линейных). Оператор Д’Аламбера (соответствующей размерности) входит в волновое уравнение любой размерности, составляя его основу, а также в уравнение Клейна — Гордона — Фока.

Нетрудно увидеть, что оператор Д’Аламбера есть обобщение оператора Лапласа на случай пространства Минковского.

Запись в криволинейных координатах

Оператор Д’Аламбера в сферических координатах:

<math>\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial u}{\partial r}\right)+\frac{1}{r^2\sin \Theta}\frac{\partial}{\partial \Theta}\left(\sin\Theta\frac{\partial u}{\partial\Theta}\right)+\frac{1}{r^2\sin^2\Theta}\frac{\partial^2 u}{\partial\varphi^2}-\frac{1}{c^2}\frac{\partial^2 u}{\partial t^2};</math>

в цилиндрических координатах:

<math>\frac{1}{\rho}\frac{\partial}{\partial\rho}\left(\rho\frac{\partial u}{\partial\rho}\right)+\frac{1}{\rho^2}\frac{\partial^2u}{\partial\varphi^2}+\frac{\partial^2u}{\partial z^2}-\frac{1}{c^2}\frac{\partial^2u}{\partial t^2};</math>

в общих криволинейных координатах (для пространства-времени):

<math>\square u\equiv\frac{1}{\sqrt{-g}}\frac{\partial}{\partial x^\nu}\left(\sqrt{-g}\,g^{\mu\nu}\frac{\partial u}{\partial x^\mu}\right),</math>

где <math>g</math> — определитель матрицы <math>\|g_{\mu\nu}\|</math>, составленный из коэффициентов метрического тензора <math>g_{\mu\nu}</math>.

Примечания

Шаблон:Примечания

Литература

Шаблон:Rq Шаблон:Дифференциальное исчисление

  1. Волновое уравнение // Савельев И. В. Курс общей физики. Том II. — С. 398.