Русская Википедия:Основание (химия)

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Значения Основание — химическое соединение, способное образовывать ковалентную связь с протоном (основание БрёнстедаШаблон:Переход) либо с вакантной орбиталью другого химического соединения (основание ЛьюисаШаблон:Переход)[1]. В узком смысле, под основаниями понимают осно́вные гидроксиды — сложные вещества, при диссоциации которых в водных растворах отщепляется только один вид анионов — гидроксид-ионы OH[2].

Частным случаем оснований являются щёлочи — гидроксиды щелочных, щелочноземельных металлов, а также некоторых других элементов, например, таллия. Реакции оснований с кислотами называют реакциями нейтрализации.

История

Понятие основания сформировалось в XVII веке и было впервые введено в химию французским химиком Гийомом Франсуа Руэлем в 1754 году. Он отметил, что кислоты, известные в те времена как летучие жидкости (например, уксусная или соляная кислоты), превращаются в кристаллические соли только в сочетании с конкретными веществами. Руэль предположил, что эти вещества служат «основаниями» для образования солей в твёрдой форме[3].

Единая теория кислот и оснований была впервые представлена шведским физикохимиком [[Аррениус, Сванте Август|СвантеШаблон:NbspАррениусом]] в 1887 году. В рамках своей теории Аррениус определял кислоту как вещество, при диссоциации которого образуются протоны H+, а основание — как вещество, дающее при диссоциации гидроксид-ионы OH[4]. Теория Аррениуса, однако, имела свои недостатки — например, она не учитывала влияние растворителя на кислотно-основное равновесие, а также была неприменима к неводным растворам[5].

В 1924 году Э. Франклином была создана сольвентная теория, согласно которой основание определялось как соединение, которое при диссоциации увеличивает число тех же анионов, которые образуются при диссоциации растворителя[4].

Современное определение

С 1923 года основание стали определять в рамках теорий Брёнстеда–Лоури и Льюиса, которые широко применяются и в настоящее время.

Основание в теории Брёнстеда–Лоури

В протонной теории кислот и оснований, выдвинутой в 1923 году независимо датским учёным Йоханнесом Брёнстедом и английским учёным Томасом Лоури, основанием называется соединение или ион, способный принимать (отщеплять) протон от кислоты[6]. Соответственно, кислота Брёнстеда является донором протонов, а взаимодействие кислоты с основанием сводится к передаче протона. При реакции основания Брёнстеда B с кислотой, например, с водой, основание превращается в сопряжённую кислоту BH+, а кислота становится сопряжённым основанием[4]:

<math>\mathsf{B+H_2O}\rightleftharpoons\mathsf{BH^++OH^-}.</math>

Основание в теории Льюиса

Файл:Lewis acid base interaction.png
Кислота Льюиса (А) является акцептором электронной пары основания Льюиса (В) и образует с ним ковалентную связь

Согласно электронной теории, предложенной в 1923 году американским физикохимиком Гилбертом Льюисом, основание — это вещество, способное отдавать электронную пару на образование связи с кислотой Льюиса[7]. Основаниями Льюиса могут быть амины R3N, спирты ROH, простые эфиры ROR, тиолы RSH, тиоэфиры RSR, анионы, соединения с π-связями[8]. В зависимости от орбитали, на которой расположена участвующая в реакции пара электронов, основания Льюиса подразделяют на n-, σ- и π-типы — электронные пары для этих типов расположены соответственно на несвязывающих, σ- и π-орбиталях[4].

Понятия основания в теориях Льюиса и Брёнстеда–Лоури совпадают: согласно обеим теориям основания отдают пару электронов на образование связи. Разница заключается лишь в том, куда расходуется эта электронная пара. Основания Брёнстеда за её счёт образуют связь с протоном, а основания Льюиса — с любыми частицами, имеющими вакантную орбиталь. Таким образом, существенные различия этих теорий касаются понятия кислоты, а не основания[8][4].

<math>\mathsf{AlCl_3+Cl^-}\rightleftharpoons\mathsf{AlCl_4^-}</math>

<math>\mathsf{BF_3+(C_2H_5)_2O}\rightleftharpoons\mathsf{BF_3\cdot(C_2H_5)_2O}</math>

Теория Льюиса не предусматривает количественной оценки способности оснований реагировать с кислотами Льюиса. Однако, для качественной оценки широко применяется принцип жёстких и мягких кислот и оснований Пирсона (принцип ЖМКО), согласно которому жёсткие кислоты предпочтительно реагируют с жёсткими основаниями, а мягкие кислоты — с мягкими основаниями. По Пирсону, жёсткими основаниями являются основания, донорный центр которых обладает низкой поляризуемостью и высокой электроотрицательностью[9]Шаблон:Sfn. Напротив, мягкими основаниями являются донорные частицы с высокой поляризуемостью и низкой электроотрицательностьюШаблон:Sfn. Жёсткие и мягкие кислоты обладают такими же свойствами как жёсткие и мягкие основания, соответственно, с той разницей, что они являются акцепторными частицами[10].

Классификация оснований и кислот в рамках принципа ЖМКО[8]Шаблон:Sfn
Жёсткие основания Промежуточные основания Мягкие основания
OH, RO, F, Cl, RCOO, NO3, NH3, RNH2, H2O, ROH, SO42−, CO32−, R2O, NR2, NH2 Br, C6H5NH2, NO2, C5H5N RS, RSH, I, H, R3C, алкены, C6H6, R3P, (RO)3P
Жёсткие кислоты Промежуточные кислоты Мягкие кислоты
H+, Li+, Na+, K+, Mg2+, Ca2+, Al3+, Cr3+, Fe3+, B(OR)3, AlR3, AlCl3, SO3, BF3, RCO+, CO2, RSO2+ Cu2+, Fe2+, Zn2+, SO2, R3C+, C6H5+, NO+ Ag+, Cu+, Hg2+, RS+, I+, Br+, Pb2+, BH3, карбены

Критерий ЖМКО не имеет количественных параметров, однако основания Льюиса можно приблизительно расположить в ряды по их льюисовской основности. Например, мягкость оснований убывает в следующих рядах[8]:

<math>\mathsf{I^- > Br^- > Cl^- > F^-},</math>

<math>\mathsf{CH_3^- > NH_2^- > OH^- > F^-}.</math>

Основание в общей теории Усановича

В общей теории кислот и оснований, созданной М. И. Усановичем в 1939 году, основание определено как вещество, отдающее анионы (или электроны) и принимающие катионы. Таким образом, в рамках теории Усановича в понятие основания входят как основания Брёнстеда, так и основания Льюиса, а также восстановители[5]. Кроме того, само понятие основности, как и кислотности, в общей теории Усановича рассматривается как функция вещества, проявление которой зависит не от самого вещества, а от его партнёра по реакции[11].

Сила оснований

Количественное описание силы оснований

Теория Брёнстеда–Лоури позволяет количественно оценить силу оснований, то есть их способность отщеплять протон от кислот. Это принято делать при помощи константы основности Kb — константы равновесия реакции основания с кислотой сравнения, в качестве которой выбрана вода. Чем выше константа основности, тем выше сила основания и тем больше его способность отщеплять протон[8]. Часто константу основности выражают в виде показателя константы основности pKb. Например, для аммиака, выступающего как основания Брёнстеда, можно записать[4][12]:

<math>\mathsf{NH_3+H_2O}\rightleftharpoons\mathsf{NH_4^++OH^-}</math>

<math>K_b=\frac{[\mathsf{NH_4^+}]\cdot[\mathsf{OH^-}]}{[\mathsf{NH_3}]} = 1{,}79\cdot10^{-5};</math>

<math>\ \mathrm{p}K_b=-\log K_b = 4{,}75.</math>

Для многоосновных оснований используют несколько значений констант диссоциации Kb1, Kb2 и т. д. Например, фосфат-ион может протонироваться трижды:

<math>\mathsf{PO_4^{3-}+H_2O}\rightleftharpoons\mathsf{HPO_4^{2-}+OH^-}; K_\mathrm{b1}=\frac{[\mathsf{HPO_4^{2-}}]\cdot[\mathsf{OH^-}]}{[\mathsf{PO_4^{3-}}]} = 2{,}10\cdot10^{-2};</math>

<math>\mathsf{HPO_4^{2-}+H_2O}\rightleftharpoons\mathsf{H_2PO_4^-+OH^-}; K_\mathrm{b2}=\frac{[\mathsf{H_2PO_4^-}]\cdot[\mathsf{OH^-}]}{[\mathsf{HPO_4^{2-}}]} = 1{,}58\cdot10^{-7};</math>

<math>\mathsf{H_2PO_4^-+H_2O}\rightleftharpoons\mathsf{H_3PO_4+OH^-}; K_\mathrm{b3}=\frac{[\mathsf{H_3PO_4}]\cdot[\mathsf{OH^-}]}{[\mathsf{H_2PO_4^-}]} = 1{,}32\cdot10^{-12}.</math>

Силу основания можно также охарактеризовать константой кислотности его сопряжённой кислоты Ka (BH+), причём произведение константы основности Kb на константу Ka (BH+) равно ионному произведению воды для водных растворов[12] и константе автопротолиза растворителя в общем случае[8].

<math>K_a\mathrm{(NH_4^+)}=\frac{[\mathsf{NH_3}]\cdot[\mathsf{H^+}]}{[\mathsf{NH_4^+}]} = 5{,}62\cdot10^{-10};</math>

<math>{K_a\mathrm{(NH_4^+)}}\cdot{K_b\mathrm{(NH_3)}}=K_w=1\cdot10^{-14};</math>

<math>{\mathrm{p}K_a\mathrm{(NH_4^+)}}+{\mathrm{p}K_b\mathrm{(NH_3)}}=\mathrm{p}K_w=14</math>

Из последнего уравнения также следует, что сила основания тем выше, чем ниже кислотность сопряжённой ему кислоты. Например, вода является слабой кислотой и при отщеплении протона превращается в сильное основание — гидроксид-ион OH[8].

Шаблон:Начало скрытого блока

Формула основания Формула сопряжённой кислоты pKb pKa (BH+) Формула основания Формула сопряжённой кислоты pKb pKa (BH+)
ClO4 HClO4 19 ± 0,5 −5 ± 0,5 HPO42− H2PO4 6,80 7,20
HSO4 H2SO4 16,8 ± 0,5 −2,8 ± 0,5 ClO HClO 6,75 7,25
H2O H3O+ 15,74 −1,74 H2BO3 H3BO3 4,76 9,24
NO3 HNO3 15,32 −1,32 NH3 NH4+ 4,75 9,25
HOOC-COO (COOH)2 12,74 1,26 CN HCN 4,78 9,22
HSO3 H2SO3 12,08 1,92 CO32− HCO3 3,67 10,33
SO42− HSO4 12,04 1,96 HOO H2O2 11,62 3,38
H2PO4 H3PO4 11,88 2,12 PO43− HPO42− 1,68 12,32
F HF 10,86 3,14 OH H2O −1,74 15,74
NO2 HNO2 10,65 3,35 NH2 NH3 (ж.) −19 33
CH3COO CH3COOH 9,24 4,76 H H2 −24,6 38,6
SH H2S 6,95 7,05 СH3 СH4 ~−44 ~58

Шаблон:Конец скрытого блока

Влияние растворителя

На кислотно-основное равновесие значительное влияние оказывает растворитель. В частности, для водных растворов было обнаружено, что все основания с константами основности pKb < 0 имеют одинаковые свойства (например, pH их растворов практически одинаков при равных концентрациях). Объясняется это тем, что такие основания в воде практически нацело превращаются в гидроксид-ион OH, который является единственным основанием в растворе. Так, все основания с pKb < 0 (амид натрия NaNH2, гидрид натрия NaH и др.) дают эквивалентное количество гидроксид-ионов в водных растворах, выравниваясь между собой по силе. Данное явление получило название нивелирующего эффекта растворителя. Аналогичным образом, в водных растворах выравниваются по силе и очень слабые основания с pKb > 14[13][14].

Основания с pKb от 0 до 14 в воде частично протонированы и находятся в равновесии с сопряжённой кислотой, а их свойства в растворе зависят от значения pKb. В этом случае говорят о дифференцирующем эффекте растворителя. Интервал pKb, в котором основания дифференцированы по силе, равен показателю константы автопротолиза растворителя. Для разных растворителей этот интервал различен (14 для воды, 19 для этанола, 33 для аммиака и т. д.), соответственно, и набор дифференцированных и нивелированных оснований для них разныйШаблон:Sfn.

В растворителях, обладающих выраженными кислотными свойствами, все основания становятся более сильными и большее число оснований нивелируется по силе. Например, уксусная кислота уравнивает большинство известных оснований по силе со своим сопряжённым основанием — ацетат-ионом CH3COO. Напротив, основные растворители (аммиак) служат дифференцирующими растворителями для оснований[15].

Влияние строения основания

Существует несколько факторов, которые определяют относительную силу органических и неорганических оснований и которые связаны с их строением. Часто несколько факторов действуют одновременно, поэтому трудно предсказать их суммарное влияние. Среди наиболее значимых можно выделить следующие факторы.

  • Индуктивный эффект (эффект поля). При повышении доступности электронной пары основания его сила возрастает. По этой причине введение электронодонорных заместителей в основание способствует проявлению их основных свойств. Например, введение алкильных заместителей в молекулу аммиака приводит к более сильным основаниям, чем сам аммиак[16]. Напротив, введение акцепторных заместителей в молекулу понижает силу основания[8].
Константы основности pKb для аммиака и простейших аминов[16]
Аммиак
NH3
Метиламин
CH3NH2
Этиламин
C2H5NH2
Диметиламин
(CH3)2NH
Диэтиламин
(C2H5)2NH
Триметиламин
(CH3)3N
Триэтиламин
(C2H5)3N
4,75 3,36 3,33 3,23 3,07 4,20[К 1] 3,12[К 1]
  • Мезомерный эффект (резонансный эффект). Электронодонорные и электроноакцепторные заместители также оказывают, соответственно, положительное и отрицательное влияние на силу основания при наличии сопряжения с парой электронов центрального атома основания. В таком случае говорят о мезомерном эффекте. Данный эффект приводит к тем же последствиям, что и индуктивный: различается лишь механизм их действия. Так, пара-нитроанилин является более слабым основанием, чем анилин (pKb равны 12,89 и 9,40 соответственно) из-за акцепторного влияния нитрогруппы, которая при участии π-связей бензольного кольца находится в сопряжении с парой электронов атома азота аминогрппы и снижает её доступность[17].
Эффект сопряжения проявляется также в том случае, если электронная пара основания находится в системе сопряжения, например, с ароматической системой или двойной связью. В таком случае основания имеет меньшую силу. Например, амиды и анилины являются гораздо более слабыми основаниями, чем амины[16].
  • Корреляция с расположением атомов в периодической системе. Чем выше электроотрицательность атома, тем ниже сила основания с их участием в качестве центрального атома. Так, сила основания понижается при движении по периоду периодической системы слева направо. Также основность понижается при переходе по группе сверху вниз, что связано с увеличением радиуса основного атома и, следовательно, меньшей плотностью отрицательного заряда на нём, что в итоге снижает силу связывания положительно заряженного протона[17].

<math>\mathsf{CH_3^- > NH_2^- > OH^- > F^-;}</math>

<math>\mathsf{NH_3 > PH_3 > AsH_3}</math>

  • Гибридизация. Сила органических оснований понижается, если центральный атом связан с другим атомом кратными связями. Так, при переходе от аминов к иминам и нитрилам основность уменьшается. Это объясняется тем, что электронная пара в этих соединениях располагается на sp3-, sp2- и sp-гибридных орбиталях атома азота соответственно, то есть в данном ряду электронная пара приближается по характеру к s-электронам, приближаясь к атомному ядру и становясь менее доступной[16].

<math>\mathsf{RCH_2NH_2 > RCH{=}NH > {RC}{\equiv}{N}}</math>

Супероснования

Шаблон:Заготовка раздела

Основания в органической химии

Шаблон:Заготовка раздела

См. также

Комментарии

Шаблон:Примечания

Примечания

Шаблон:Примечания


Ошибка цитирования Для существующих тегов <ref> группы «К» не найдено соответствующего тега <references group="К"/>