Отража́ющая фу́нкция — функция, связывающая прошлое состояние системы с её будущим состоянием в симметричный момент времени. Понятие отражающей функции введено Владимиром Ивановичем Мироненко.
Определение
Пусть <math>\varphi(t;t_0,x)</math> есть общее решение в форме Коши системы дифференциальных уравнений <math>\dot x=X(t,x),</math> решения которой однозначно определяются своими начальными данными. Отражающая функция этой системы определяется формулой <math>F(t,x)=\varphi(-t;t,x).</math>
Применение
Для <math>2\omega</math>-периодической по переменной <math>t</math> системы дифференциальных уравнений с отражающей функцией <math>F(t,x)</math> отображение <math>\Pi(x)</math> за период <math>[-\omega;\omega]</math> (отображение Пуанкаре) находится по формуле <math>\Pi(x)=F(-\omega,x).</math> Поэтому знание отражающей функции позволяет находить начальные данные <math>(\omega,x_0)</math> для <math>2\omega</math>-периодических решений <math>\varphi(t;-\omega,x_0)</math> рассматриваемой системы и исследовать эти решения на устойчивость по Ляпунову. Отражающая функция <math>F(t,x)</math> системы <math>\dot x=X(t,x)</math> удовлетворяет так называемому основному соотношению
<math>F_t+F_x X+X(-t,F)=0,</math> <math>F(0,x)=x.</math>
С помощью этого соотношения устанавливается, что для многих неинтегрируемых в квадратурах систем дифференциальных уравнений отображение <math>\Pi(x)</math> за период <math>[-\omega;\omega]</math> может быть найдено даже через элементарные функции. В этом отражающая функция может быть сопоставлена с интегрирующим множителем.
Отражающая функция используется при исследовании вопросов существования и устойчивости периодических решений краевых задач для систем дифференциальных уравнений.
См. также
Литература
Ссылки
Шаблон:Rq
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|