Русская Википедия:Пиримидиновый димер

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Файл:DNA UV mutation.svg
DNA Lesion-Thymine Dimer

Пиримидиновый димер — дефект ДНК, возникающий в результате образования ковалентной связи между двумя соседними пиримидиновыми основаниями (тимином или цитозином) под действием ультрафиолетовых лучей[1][2]. Ультрафиолетовые лучи вызывают разрыв двойной связи и образование в этом месте ковалентной связи между двумя нуклеотидами[3]. Образование димера приводит к нарушению транскрипции ДНК на данном участке и возникновению мутаций. Образование димеров является главной причиной возникновения меланомы у человека.

Типы димеров

Photodimers
Слева: 6,4-фотопродукт. Справа: циклобутановый димер

В результате реакции возникает либо циклобутановый димер, либо пиримидин-(6,4)-пиримидиновые фотопродукты. Основу циклобутанового димера составляет четырёхуглеродное кольцо, возникающее на месте разрыва двух двойных связей соседних пиримидиновых оснований[4][5][6]. 6,4-фотопродукты, составляют в среднем треть от количества циклобутановых димеров, однако более мутагенны[7].

Репарацию циклобутановых димеров осуществляет ДНК-фотолиаза[8].

Мутагенез

Пиримидиновые димеры часто вызывают мутации при репликации, репарации или транскрипции ДНК как у прокариотов, так и у эукариотов. Как тиминовые, так и цитозиновые димеры, и димеры тимин — цитозин могут вызывать мутации. Цитозиновые димеры чаще приводят к мутациям, чем тиминовые димеры, а горячие пятна ультрафиолетового мутагенеза чаще всего совпадают с димерами тимин — цитозин, но ими могут быть и цитозиновые димеры[9]. Механизмы образования мутаций, вызванных пиримидиновыми димерами, были разработаны в рамках полимеразной и полимеразно-таутомерной моделей ультрафиолетового мутагенеза. В полимеразной модели предполагается, что единственной причиной мутагенеза являются случайные ошибки ДНК-полимераз, ферментов, встраивающих основания напротив матричных оснований[10]. Полимеразно-таутомерная модель ультрафиолетового мутагенеза основана на том факте, что при образовании димеров может изменяться таутомерное состояние входящих в них оснований[11]. Показано, что некоторые из редких таутомерных состояний могут приводить к мишенным мутациям замены оснований в процессах репликации или репарации[12]. Существуют модели, основанные на дезаминировании цитозина. Димеры, включающие цитозин, склонны к деаминированию, включая замену цитозина на тимин[13].

Репарация ДНК

Файл:Melanoma.jpg
Меланома — одна из злокачественных опухолей кожи

Пиримидиновые димеры вызывают локальные конформационные нарушения в структуре ДНК, позволяющие ферментам репарации распознавать дефект[14]. У большинства организмов (исключая плацентарных млекопитающих, к которым относится человек) они могут восстанавливаться за счёт фотореактивации[15]. Фотореактивация — это процесс, в котором фермент ДНК-фотолиаза напрямую восстанавливает димер за счёт фотохимической реакции. Дефекты ДНК обнаруживаются этим ферментом, после чего в результате поглощения кванта света с длиной волны более 300 нм ковалентная связь между основаниями разрывается, восстанавливая цепочку ДНК до первоначального состояния[16].

Наиболее универсальный процесс восстановления повреждений ДНК связан с вырезанием дефектных и близстоящих нуклеотидов и восстановлением комплементарной цепочки[16].

Пигментная ксеродерма — генетическое заболевание человека, вызванное сбоем процесса репарации фотодимеров и характеризующаяся обесцвечиванием кожи и появлением опухолей при ультрафиолетовом облучении. Нерепарированные димеры способны также привести к меланоме[17].

Примечания

Шаблон:Примечания

Ссылки

  1. Шаблон:Статья
  2. Шаблон:Книга
  3. Шаблон:Статья.
  4. Шаблон:Статья
  5. Шаблон:Cite web
  6. Шаблон:Книга
  7. Шаблон:Книга
  8. Шаблон:Статья
  9. Parris C. N., Levy D. D., Jessee J., Seidman M. M. Proximal and distal effects of sequence context on ultraviolet mutational hotspots in a shuttle vector replicated in xeroderma cells // J. Mol. Biol. — 1994. — 236. — P. 491—502.
  10. Pham P., Bertram J. G, O’Donnell M., Woodgate R., Goodman M. F. A model for SOS-lesion-targeted mutations in Escherichia coli // Nature. — 2001. — 408. — P. 366—370.
  11. Grebneva H. A. Nature and possible mechanisms formation of potential mutations arising at emerging of thymine dimers after irradiation of double-stranded DNA by ultraviolet light // J. Mol. Struct. — 2003. — 645. — P. 133—143.
  12. Grebneva H. A. One of mechanisms of targeted substitution mutations formation at SOS-replication of double-stranded DNA containing cis-syn cyclobutane thymine dimers // Environ. Mol. Mutagen. — 2006. — 47. — P. 733—745.
  13. Шаблон:Статья
  14. Kemmink, Johan; Boelens, Rolf; Koning, Thea M.G.; Kaptein, Robert; Van der Morel, Gijs A.; Van Boom, Jacques H. (1987) «Conformational Changes in the oligonucleotide duplex d(GCGTTGCG)*d(GCGAAGCG) induced by formation of a cis-syn thymine dimer». European Journal of Biochemistry 162, 31-43
  15. Essen LO, Klar T. (2006). Light-driven DNA repair by photolyases. Cell Mol Life Sci 63 (11), 1266-77.
  16. 16,0 16,1 Friedberg, Errol C. (23 January 2003) «DNA Damage and Repair». Nature 421, 436—439. doi:10.1038/nature01408
  17. Vink, Arie A.; Roza, Len (2001) «Biological consequences of cyclobutane pyrimidine dimers». Journal of Photochemistry and Photobiology B: Biology 65, 101—104