Русская Википедия:Плазмон

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Otheruses Шаблон:Квазичастица В физике, плазмо́н — квазичастица, отвечающая квантованию плазменных колебаний, которые представляют собой коллективные колебания свободного электронного газа[1].

Происхождение понятия

Термин «плазмон» был введён в 1952 году американскими физиками Дэвидом Пайнсом и Дэвидом Бомом[2][3] как гамильтониан дальних электрон-электронных корреляций[4][5].

Поскольку плазмоныШаблон:— это квантованные классические плазменные колебания, большинство их свойств могут быть выведены напрямую из уравнений Максвелла[6].

Объяснение

Плазмоны в значительной мере определяют оптические свойства металлов и полупроводников. Электромагнитное излучение с частотой ниже плазменной частоты материала хорошо отражается от него, потому что свободные электроны смогут колебаться с такой частотой в такт с колебаниями электромагнитного поля этого излучения, и будут экранировать его. Но при частоте выше плазменной электроны уже не могут колебаться достаточно быстро, и электромагнитное излучение такой высокой частоты может проникать в толщу металла или полупроводника, проходить сквозь него или поглощаться им.

Плазменные частоты большинства чистых металлов лежат в ультрафиолетовой области спектра, а во всём видимом диапазоне эти металлы одинаково хорошо отражают излучение, и потому выглядят бесцветными и блестящими. Но медь и золото имеют электронные переходы на частотах видимого спектра. На них свет сильнее поглощается металлом, чем на других частотах видимого диапазона, из-за чего медь и золото в отражённом свете выглядят окрашенными[7][8].

В полупроводниках плазменная частота электронов валентной зоны обычно находится в дальнем ультрафиолетовом диапазоне, но межуровневые электронные переходы могут быть с энергиями фотонов видимого света. Такой полупроводник также будет выборочно поглощать частоты видимого света и выглядеть цветным[9][10]. У высоколегированных полупроводников в форме наночастиц плазменная частота может быть в ближнем или среднем инфракрасном диапазоне[11][12].

Энергию плазмона можно оценить в модели почти свободных электронов как:

<math>

E_{p} = \hbar \omega_p = \hbar e \sqrt{\frac{n}{m\varepsilon_0}}, </math>

где Шаблон:Math — плотность валентных электронов, Шаблон:Math — элементарный заряд, Шаблон:Math — масса электрона и Шаблон:Math — проницаемость вакуума.

Поверхностные плазмоны (плазмоны, ограниченные поверхностями) сильно взаимодействуют со светом, приводя к образованию поляритонов. Они играют роль в поверхностном усилении рамановского рассеяния света и в объяснении аномалий в дифракции металлов. Поверхностный плазмонный резонанс используется в биохимии, чтобы определять присутствие молекул на поверхности.

Локализованный поверхностный плазмон присутствует в мелких металлических частицах (наночастицах), таких как золото или серебро. При достаточно малых размерах частиц (диаметр частицы < длина волны входящего электромагнитного излучения), она может быть рассмотрена как колеблющийся диполь. Поглощённая энергия электромагнитного излучения может существенно нагревать наночастицы[13].

Возможное использование

Плазмоны рассматриваются как средство передачи информации в компьютерных чипах, так как провода для плазмонов могут быть намного тоньше, чем обычные провода, и могут поддерживать намного более высокие частоты (в режиме 100 ТГц, в то время как обычные провода обладают большими потерями при 10 ГГц). Они были также предложены как средство для литографии и микроскопии высокого разрешения из-за их чрезвычайно малых длин волн. Оба из этих применений с успехом были продемонстрированы в лабораториях.Шаблон:Нет АИ

Также плазмоны можно использовать для генерации излучения в структурах, называемых спазерами.

Примечания

Шаблон:Примечания

Ссылки

Шаблон:Wiktionary Шаблон:Квазичастицы