Русская Википедия:Полиэтилен

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

См. также другие значения аббревиатуры ПНД.

Шаблон:Вещество

Полиэтиле́н — термопластичный полимер этилена, относится к классу полиолефинов[1]. Является органическим соединением и имеет длинные молекулы …—CH2—CH2—CH2—CH2—…, где «—» обозначает ковалентные связи между атомами углерода.

Представляет собой массу белого цвета (тонкие листы прозрачны и бесцветны). Химически стоек, диэлектрик, не чувствителен к удару (амортизатор), при нагревании размягчается (80—120 °С), адгезия (прилипание) — чрезвычайно низкая. Часто неверно называется целлофаном[2].

История

Изобретателем полиэтилена считается немецкий инженер Ганс фон Пехманн, который впервые случайно получил этот полимер благодаря инженерам Эрику Фосету и Реджинальду Гибсону. Сначала полиэтилен использовался в производстве телефонного кабеля и лишь в 1950-е годы стал использоваться в пищевой промышленности как упаковка[3]Шаблон:Проверить авторитетность.

По другой версии, более принятой в научных кругах, развитие полиэтилена можно рассматривать с работ сотрудников компании Imperial Chemical Industries по созданию промышленной технологии производства, проводившихся начиная с 1920-х годов. Активная фаза создания начата после монтажа установки для синтеза, с которой в 1931 году работали Фосет и Гибсон. Ими был получен низкомолекулярный парафинообразный продукт, имеющий мономерное звено, аналогичное полиэтилену. Работы Фоссета и Гибсона продолжались вплоть до марта 1933 года, когда было принято решение модернизировать аппарат высокого давления для получения более качественного результата и большей безопасности. После модернизации эксперименты были продолжены совместно с М. В. Перрином и Дж. Г. Паттоном и в 1936 году завершились получением патента на полиэтилен низкой плотности (ПВД). Коммерческое производство ПВД было начато в 1938 году[4].

История полиэтилена высокой плотности (ПНД) развивалась с 1920-х годов, когда Карл Циглер начал работы по созданию катализаторов для ионно-координационной полимеризации. В 1954 году технология была в целом освоена, и был получен патент. Позже было начато промышленное производство ПНД[4].

Названия

Различные виды полиэтилена принято классифицировать по плотности[5]. Несмотря на это, имеется множество ходовых названий гомополимеров и сополимеров, часть из которых приведена ниже.

  • Полиэтилен низкой плотности (высокого давления) — ПЭНП[6], ПВД, LDPE (Low Density Polyethylene).
  • Полиэтилен высокой плотности (низкого давления) — ПЭВП[6], ПНД, HDPE (High Density Polyethylene).
  • Полиэтилен среднего давления (высокой плотности) — ПСД[6].
  • Линейный полиэтилен средней плотности — ПЭСП[6], MDPE или PEMD[1].
  • Линейный полиэтилен низкой плотности — ЛПЭНП[6], LLDPE или PELLD[1].
  • Полиэтилен очень низкой плотности — VLDPE
  • Полиэтилен сверхнизкой плотности — ULDPE
  • Металлоценовый линейный полиэтилен низкой плотности — MPE
  • Сшитый полиэтилен — PEX или XLPE, XPE
  • Высокомолекулярный полиэтилен — ВМПЭ, HMWPE, PEHMW или VHMWPE[1]
  • Сверхвысокомолекулярный полиэтилен — UHMWPE
  • Полиэтилен повышенной термостойкости (сополимер с октеном[7]) - PE-RT (тип I и тип II)

В данном разделе не рассматриваются названия разных сополимеров, иономеров и хлорированного полиэтилена.

Молекулярное строение

Шаблон:Нет ссылок в разделе Макромолекулы полиэтилена высокого давления (n ≅ 1000) содержат боковые углеводородные цепи C1—С4, молекулы полиэтилена низкого давления практически неразветвлённые, в нём больше доля кристаллической фазы, поэтому этот материал более плотный; молекулы полиэтилена среднего давления занимают промежуточное положение. Большим количеством боковых ответвлений объясняется более низкое содержание кристаллической фазы и соответственно более низкая плотность ПВД по сравнению с ПНД и ПСД.

Показатели, характеризующие строение полимерной цепи различных видов полиэтилена
Показатель ПВД ПСД ПНД
Общее число групп СН3 на 1000 атомов углерода: 21,6 5 1,5
Число концевых групп СН3 на 1000 атомов углерода: 4,5 2 1,5
Этильные ответвления 14,4 1 1
Общее количество двойных связей на 1000 атомов углерода 0,4—0,6 0,4—0,7 1,1—1,5
в том числе:
* винильных двойных связей (R-CH=CH2), % 17 43 87
* винилиденовых двойных связей , % 71 32 7
* транс-виниленовых двойных связей (R-CH=CH-R'), % 12 25 6
Степень кристалличности, % 50—65 75—85 80—90
Плотность, г/см³ 0,9—0,93 0,93—0,94 0,94—0,96

Полиэтилен низкого давления

Физико-механические свойства ПНД при 20 °C
Параметр Значение
Плотность, г/см³ 0,94—0,96
Разрушающее напряжение, кгс/см²
* при растяжении 100—170
* при статическом изгибе 120—170
* при срезе 140—170
Относительное удлинение при разрыве, % 500—600
Модуль упругости при изгибе, кгс/см² 1200—2600
Предел текучести при растяжении, кгс/см² 90—160
Относительное удлинение в начале течения, % 15—20
Твёрдость по Бринеллю, кгс/мм² 1,4—2,5

С увеличением скорости растяжения образца разрушающее напряжение при растяжении и относительное удлинение при разрыве уменьшаются, а предел текучести при растяжении возрастает.

С повышением температуры разрушающее напряжение полиэтилена при растяжении, сжатии, изгибе и срезе понижается. а относительное удлинение при разрыве возрастает до определённого предела, после которого также начинает снижаться

Изменение разрушающего напряжения при сжатии, статическом изгибе и срезе в зависимости от температуры (определено при скорости деформации 500 мм/мин и толщине образца 2 мм)
Разрушающее напряжение, кгс/см² Температура, °С
20 40 60 80
при сжатии 126 77 40
при статическом изгибе 118 88 60
при срезе 169 131 92 53
Зависимость модуля упругости при изгибе ПВД от температуры
Температура, °С −120 −100 −80 −60 −40 −20 0 20 50
Модуль упругости при изгибе, кгс/см² 28100 26700 23200 19200 13600 7400 3050 2200 970

Свойства изделий из полиэтилена существенно зависят от режимов их изготовления (скорости и равномерности охлаждения) и условий эксплуатации (температуры, давления, продолжительности. воздействия нагрузки и т. п.).

Сверхвысокомолекулярный полиэтилен высокой плотности

Шаблон:Main Относительно новой и перспективной разновидностью полиэтилена является сверхвысокомолекулярный полиэтилен высокой плотности (СВМПЭ, англ. UHMW PE), изделия из которого обладают рядом замечательных свойств: высокой прочностью и ударной вязкостью в большом диапазоне температур (от −200°С до + 100°С), низким коэффициентом трения, большими химо- и износостойкостью и применяются в военном деле (для изготовления бронежилетов, шлемов), машиностроении, химической промышленности и др.Шаблон:Нет АИ

Химические свойства

Горит голубоватым пламенем, со слабым светом[8], при этом издаёт запах парафина[9], то есть такой же, какой исходит от горящей свечи.

Устойчив к действию воды, не реагирует со щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже с концентрированной серной кислотой, но разрушается при действии 50%-й азотной кислоты при комнатной температуре и под воздействием жидкого и газообразного хлора и фтора. При реакции полиэтилена с галогенами образуется множество полезных для народного хозяйства продуктов, поэтому эта реакция может быть использована для переработки отходов полиэтилена. В отличие от непредельных углеводородов, не обесцвечивает бромную воду и раствор перманганата калия[8].

При комнатной температуре нерастворим и не набухает ни в одном из известных растворителей. При повышенной температуре (80 °C) растворим в циклогексане и четырёххлористом углероде. Под высоким давлением может быть растворён в перегретой до 180 °C воде.

Со временем подвергается деструкции с образованием поперечных межцепных связей, что приводит к повышению хрупкости на фоне небольшого увеличения прочности. Нестабилизированный полиэтилен на воздухе подвергается термоокислительной деструкции (термостарению). Термостарение полиэтилена проходит по радикальному механизму, сопровождается выделением альдегидов, кетонов, перекиси водорода и др.

Получение

На обработку поступает в виде гранул от 2 до 5 мм. Различают полиэтилен высокого, среднего и низкого давления, они отличаются структурой макромолекул и свойствами. Полиэтилен получают полимеризацией этилена:[10]

ПВД

Полиэтилен высокого давления (ПВД) образуется при следующих условиях:

Продукт получают в автоклавном или трубчатом реакторах. Реакция идёт по радикальному механизму. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000—500 000 и степень кристалличности 50—60 %. Жидкий продукт впоследствии гранулируют. Реакция идёт в расплаве.

ПСД

Полиэтилен среднего давления (ПСД) образуется при следующих условиях:

Продукт выпадает из раствора в виде хлопьев. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 300 000—400 000, степень кристалличности 80—90 %.

ПНД

Полиэтилен низкого давления (ПНД) образуется при следующих условиях:

  • температура 120—150 °C;
  • давление ниже 0,1—2 МПа;
  • присутствие катализатора (катализаторы Циглера — Натта, например, смесь TiCl4 и AlR3);

Полимеризация идёт в суспензии по ионно-координационному механизму. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000—300 000, степень кристалличности 75—85 %.

Следует иметь в виду, что названия «полиэтилен низкого давления», «среднего давления», «высокой плотности» и т. д. имеют чисто риторическое значение. Так, полиэтилен, получаемый по второму и третьему методам, имеет одинаковую плотность и молекулярный вес. Давление в процессе полимеризации при так называемых низком и среднем давлениях в ряде случаев одно и то же.

Другие способы получения

Существуют и другие способы полимеризации этилена, например под влиянием радиоактивного излучения, однако они не получили промышленного распространения.

Модификации

Ассортимент полимеров этилена может быть значительно расширен получением сополимеров его с другими мономерами, а также путём получения композиций при компаундировании полиэтилена одного типа с полиэтиленом другого типа, полипропиленом, полиизобутиленом, каучуками и т. п.

На основе полиэтилена и других полиолефинов могут быть получены многочисленные модификации — привитые сополимеры с активными группами, улучшающими адгезию полиолефинов к металлам, окрашиваемость, снижающими его горючесть и т. д.

Особняком стоят модификации так называемого «сшитого» полиэтилена ПЭ-С (PE-X). Суть сшивки состоит в том, что молекулы в цепочке соединяются не только последовательно, но и образуются боковые связи которые соединяют цепочки между собой, за счёт этого достаточно сильно изменяются физические и в меньшей степени химические свойства изделий.

Различают 4 вида сшитого полиэтилена (по способу производства): пероксидный, силановый, радиационный и азотный. Наибольшее распространение получил РЕх-b, как наиболее быстрый и дешёвый в производстве.

Радиационная обработка полиэтилена определёнными дозами приводит к появлению эффекта памяти формы и усиливает прочность[11].

Применение

Малотоннажная марка полиэтилена — так называемый «сверхвысокомолекулярный полиэтилен», отличающийся отсутствием каких-либо низкомолекулярных добавок, высокой линейностью и молекулярной массой, используется в медицинских целях в качестве замены хрящевой ткани суставов. Несмотря на то, что он выгодно отличается от ПНД и ПВД своими физическими свойствами, применяется редко из-за трудности его переработки, так как обладает низким ПТР и перерабатывается только прессованием.

Для борьбы с загрязнением окружающей среды полиэтиленовыми пакетами применяются различные меры, и около 40 стран ввели запрет или ограничение на продажу и(или) производство пластиковых пакетов.

Утилизация

Переработка

Изделия из полиэтилена пригодны для переработки и последующего использования. Полиэтилен (кроме сверхвысокомолекулярного) перерабатывается всеми известными для пластмасс методами, такими как экструзия, экструзия с раздувом, литьё под давлением, пневматическое формование. Экструзия полиэтилена возможна на оборудовании с установленным «универсальным» червяком.

Сжигание

При нагревании полиэтилена на воздухе возможно выделение в атмосферу летучих продуктов термоокислительной деструкции. При термической деструкции полиэтилена в присутствии воздуха или кислорода образуется больше низкокипящих соединений, чем при термической деструкции в вакууме или в атмосфере инертного газа. Исследование структурных изменений полиэтилена во время деструкции на воздухе, в атмосфере кислорода или в смеси, состоящей из O2 и О3, при 150—210 °С показало, что образуются гидроксильные, перекисные, карбонильные и эфирные группы. При нагревании полиэтилена при 430 °С происходит очень глубокий распад на парафины (65—67 %) и олефины (16—19 %). Кроме того, в продуктах разложения обнаруживаются: окись углерода (до 12 %), водород (до 10 %), углекислый газ (до 1,6 %). Из олефинов основную массу составляет обычно этилен. Наличие окиси углерода свидетельствует о присутствии кислорода в полиэтилене, то есть о наличии карбонильных групп.

Биоразложение

Плесневые грибки Penicillium simplicissimum способны за три месяца частично утилизировать полиэтилен, предварительно обработанный азотной кислотой. Относительно быстро разлагают полиэтилен бактерии Nocardia asteroides. Некоторые бактерии, обитающие в кишечнике южной амбарной огнёвки (Plodia interpunctella), способны разложить 100 мг полиэтилена за восемь недель. Гусеницы пчелиной огнёвки (Galleria mellonella) могут утилизировать полиэтилен еще быстрее[20][21].

Разложение полиэтилена происходит за счёт кислородного окисления связей между атомами углерода. При этом образуются сначала спиртовые, затем карбонильные и карбоксильные группы. Полученные в результате жирные кислоты вступают в β-окисление и расщепляются до ацетил-КоА.

Ферменты, осуществляющие биодеградацию

Способность окислять полиэтилен была показана для алкан-монооксигеназ, лакказ и марганцевых пероксидаз.[22]

Алкан-монооксигеназы (AlkB) - ферменты, осуществляющие биодеградацию алканов. Имеются у микроорганизмов, способных использовать нефтепродукты в качестве источника энергии и углерода. Осуществляют следующую реакцию:

Алкан + О2 + 2Н++ 2е  →  алкан-1-ол + Н2О[23]

Лакказы - ферменты, участвующие в биодеградации лигнина. Окисляют фенольные соединения с образованием активных фенольных радикалов. Фенольные радикалы затем могут окислять другие соединения, выступая в роли посредников. Благодаря наличию посредников лакказы обладают низкой специфичностью и могут окислять разнообразные соединения, включая полиэтилен и, возможно, другие виды пластика.[24]

Марганцевые пероксидазы также участвуют в биодеградации лигнина. Они окисляют Mn+2 до Mn+3 . Катионы Mn3+ в водном растворе не устойчивы, поэтому образуются хелатные комплексы катионов марганца и карбоновых кислот, таких как оксалат, малонат, малат и лактат. Эти комплексы могут окислять разнообразные соединения, которые после этого сами становятся сильными окислителями. Благодаря своей особенности марганцевые пероксидазы обладают очень низкой специфичностью, что позволяет им также окислять полиэтилен.[25]

См. также

Примечание

Шаблон:Примечания

Литература

  • ГОСТ 16338-85. Полиэтилен низкого давления. Технические условия.
  • ГОСТ 16336-77. Композиции полиэтилена для кабельной промышленности. Технические условия.
  • ГОСТ 16337-77. Полиэтилен высокого давления. Технические условия.

Шаблон:Вс Шаблон:Пластмассы Шаблон:Упаковка

  1. 1,0 1,1 1,2 1,3 Шаблон:Cite web
  2. Шаблон:Cite web
  3. Шаблон:Cite web
  4. 4,0 4,1 Дж. Уайт, Д. Чой.// Полиэтилен, полипропилен и другие полиолефины. — СПб.: Профессия, 2007.
  5. Vasile C., Pascu M. Practical Guide to Polyethylene. — Shawbury: Smithers Rapra Press, 2008.
  6. 6,0 6,1 6,2 6,3 6,4 Кулезнев В. Н. (ред.), Гусев В. К. (ред.)// Основы технологии переработки пластмасс. — М.: Химия, 2004.
  7. Шаблон:Cite web
  8. 8,0 8,1 Шаблон:Книга
  9. Шаблон:Статья
  10. Шаблон:Книга
  11. Чешуев В. И., Гладух Е. В., Сайко И. В. и др. Технология лекарств промышленного производства / В 2 частях, часть 1 // Винница, Нова Книга, 2014. — 696 с., ил. ISBN 978-966-382-540-3. С. 114.
  12. Шаблон:Cite web
  13. Шаблон:Cite web
  14. Шаблон:Cite web
  15. Шаблон:Cite web
  16. Новое в жизни, науке, технике // М.: Знание, 1970. С. 14.
  17. Погосов А. Ю., Дубковский В. А. Ионизирующая радиация: радиоэкология, физика, технологии, защита // Одесса: Наука и техника, 2013. — 804 с., ил. ISBN 978-966-1552-27-1. С. 469, 563.
  18. Ученые предложили защитить космонавтов от радиации шлемом из полиэтилена Шаблон:Wayback // Статья 15.08.2019 г. «ТАСС-Наука».
  19. Экранирующие блоки NEUTROSTOP Шаблон:Wayback // Статья на сайте kopos.ru.
  20. Шаблон:Cite web
  21. Шаблон:Статья
  22. Шаблон:Статья
  23. Шаблон:Статья
  24. Шаблон:Статья
  25. Шаблон:Статья