Русская Википедия:Потенциометр

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Значения Шаблон:Не путать Потенцио́метр (от Шаблон:Lang-la — «сила» и Шаблон:Lang-el — «измеряю») — измерительный прибор, предназначенный для определения напряжения путём сравнения двух, в общем случае, различных напряжений или ЭДС с помощью компенсационного метода. При известном одном из напряжений позволяет определять второе напряжение.

Исторически потенциометр — один из первых точных измерителей напряжений — вольтметров. Изобретён немецким физиком Иоганном Поггендорфом в 1841 году[1].

Потенциометр (измерительный прибор) не следует путать с трёхвыводным переменным резистором — электронным компонентом, жаргонно также называемым «потенциометром».

Иногда «потенциометрами» не совсем корректно называют датчики перемещений и поворотов, основанные на потенциометрический схеме, например, датчики положения дроссельной заслонки в двигателях внутреннего сгорания.

Принцип действия

Файл:Spannungskompensator.svg
Сравнение напряжений с помощью потенциометра

Потенциометр представляет собой делитель напряжения из резисторов (резистивный делитель) с переменным сопротивлением (переменных резисторов).

К делителю напряжения подключаются источник, напряжение которого известно (<math>U_0</math>), и источник, напряжение которого нужно определить (<math>U_x</math>).

Известное с достаточной точностью одно из сравниваемых напряжений принято называть «опорным напряжением» или «опорной ЭДС». В иностранной литературе опорное напряжение называют «референтным напряжением» и обычно обозначают <math>U_{ref}</math>.

Ручной или автоматической регулировкой сопротивлений делителя напряжения добиваются, чтобы напряжение <math>U_K</math>, снимаемое с делителя, стало равным напряжению (или ЭДС) <math>U_x</math>. Равенство напряжений (<math>U_x = U_K</math>) обычно называют «балансом напряжений». Индикатором «баланса» служит чувствительный измеритель малых токов (или напряжений), часто называемый «нуль-индикатором» и на рисунке обозначенный буквой «O». При <math>U_x = U_K,</math> ток <math>I_x</math>, текущий через нуль-индикатор «О», будет равен 0.

В качестве нуль-индикаторов исторически первыми стали применять чувствительные гальванометры. В современной электронике в качестве нуль-индикатора применяют дифференциальные усилители с высоким коэффициентом усиления.

Для схемы, изображённой в верхней части рисунка, по правилам Кирхгофа

<math> I_x + I_K = I_0 ; </math>
<math> U_x = U_K = I_K \cdot R_1 ; </math>
<math> U_0 + I_0 \cdot ( R_0 - R_1 ) + I_K \cdot R_1 = 0 , </math>

а с учётом <math>I_x = 0</math>:

<math> I_K = I_0 ; </math>
<math> U_x = I_0 \cdot R_1 ; </math>
<math> I_0 = \frac{ U_x }{ R_1 } ; </math>
<math> U_0 + I_0 \cdot ( R_0 - R_1 ) + I_0 \cdot R_1 = U_0 + I_0 \cdot R_0 = 0 ; </math>
<math> U_0 = - I_0 \cdot R_0 = - \frac{ U_x }{ R_1 } \cdot R_0 ;
</math>
<math> U_x = U_K = - U_0 \frac{ R_1 }{ R_0 } , </math>

где:

  • <math>R_1</math> — сопротивление участка переменного резистора <math>R_0</math> от низа (по рисунку) до подвижного контакта;
  • <math>R_0</math> — полное сопротивление переменного резистора.

Для схемы, приведённой снизу рисунка

<math>U_x = U_K = - U_0 \frac{ R_1 }{ R_1 + R_2 } . </math>

То есть, зная соотношение сопротивлений резисторов делителя напряжения при равенстве напряжений («балансе»), можно численно выразить одно напряжение (<math>U_0</math> или <math>U_x</math>) через другое напряжение (<math>U_x</math> или <math>U_0</math> соответственно).

В качестве переменного сопротивления исторически применяли реохорд. Реохорд представлял собой кусок натянутой проволоки постоянного поперечного сечения с тремя электрическими выводами. Первые два вывода прикреплялись к концам проволоки, а третий (ползунок) мог перемещаться вдоль проволоки. Электрическое сопротивление <math>R</math> однородного куска проволоки длиной <math>l</math> и постоянного поперечного сечения <math>S</math> выражается формулой <math>R = \rho \frac{ l }{ S },</math> где <math>\rho</math> — удельное электрическое сопротивление материала проволоки. Зная длину проволоки <math>L</math>, расстояние <math>l</math> от края проволоки до ползунка и напряжение <math>U_0</math> между концами проволоки, можно определить напряжение <math>U_K</math> (равное <math>U_x</math>) между ползунком и концом проволоки:

<math>U_x = U_K = - U_0 \frac{ R_1 }{ R_0 } = - U_0 \frac{ \rho \frac{ l }{ S } }{ \rho \frac{ L }{ S } } = - U_0 \frac{ l }{ L }. </math>

Реохорды, представляющие собой кусок проволоки, в современных потенциометрах практически не применяют, только иногда используются в демонстрационных целях. Современный реохорд представляет собой переменных резистор, обычно выполнен в виде однослойной спиральной намотки высокоомной проволоки на прямолинейное или тороидальное основание (каркас). Название «реохорд» в потенциометрах прочно закрепилось за этими переменными резисторами.

В качестве источника опорного напряжения (ИОН) исторически применялись электрохимические источники стабильного во времени и воспроизводимого напряжения — нормальные электрохимические элементы. В современных потенциометрах в качестве источников опорного напряжения применяют обычно полупроводниковые прецизионные ИОНы — термокомпенсированные стабилитроны и ИОНы «запрещённой зоны».

Если нагружение источника известного напряжения на резистивный делитель напряжения недопустимо, например, в случае применения источников с высоким внутренним сопротивлением, то по этому источнику предварительно калибруют другой источник с достаточно малым внутренним сопротивлением.

При балансе напряжений резистивного делителя и опорного напряжения ток через нуль-индикатор (гальванометр) равен нулю. Таким образом, источник опорного напряжения работает при балансе в режиме холостого хода, что позволяет использовать в качестве источников опорного напряжения прецизионные источники с высоким внутренним сопротивлением, например, нормальные электрохимические элементы. Аналогично, по этой же причине возможно измерение ЭДС источников неизвестного напряжения с высоким внутренним сопротивлением без искажения результата измерения, например, ЭДС электрохимических потенциометрических датчиков.

Особенности потенциометров для измерения сверхмалых напряжений

При измерении сверхмалых напряжений (на уровне микровольт — долей милливольта) становится существенным искажение результата измерения от термо-ЭДС «паразитных» термопар, образующихся в точках электрического соединения разнородных проводниковых материалов (например, медных проводников и высокоомных проводников переменных резисторов), если температура этих соединений (спаев) не равна. Без применения специальных мер значения паразитных термо-ЭДС могут достигать десятков микровольт. Например, термо-ЭДС пары медь — оловянно-свинцовый припой составляет около 3-7 мкВ/К, что при значении измеряемых напряжений в единицы-десятки микровольт может дать относительную погрешность измерения в несколько десятков процентов, что обычно недопустимо. Поэтому при конструировании подобных потенциометров прибегают к специальным мерам для снижения паразитных термо-ЭДС. Радикальная мера — тщательная термоизоляция прибора от наружной среды, иногда — термостатирование. Для пайки электрических соединений применяют припои, дающие малые термо-ЭДС в паре с медью, например, оловянно-кадмиевые припои, термо-ЭДС которых в паре с медью менее 0,3 мкВ/К.

Регистрирующие и самопишущие автоматические потенциометры

Файл:Spannungskompensator selbstabgleichend.svg
Блок-схема потенциометра с автоматической компенсацией (балансировкой). Обозначения:
* усилитель рассогласования схематически изображён в виде операционного усилителя;
* источник опорного (известного) напряжения представлен в виде перечёркнутого кружочка;
* «M» — электродвигатель для перемещения подвижного контакта (движка, ползунка) реохорда;
* <math>U_K</math> — напряжение, снимаемое с реохорда;
* <math>U_x</math> — напряжение, которое требуется определить;
* <math>U_d</math> — напряжение рассогласования

Помимо измерительных потенциометров, в которых балансировка (изменение сопротивлений резистивного делителя до достижения равенства измеряемого напряжения и напряжения, снимаемого с реохорда) выполняется вручную, существуют потенциометры с автоматической балансировкой. Автоматические устройства широко используются, например, в самопишущих регистрирующих приборах (самописцах процессов на бумажной ленте), которые до сих пор распространены в системах управления производственными процессами. Электромеханические потенциометры постепенно вытесняются цифровыми устройствами хранения и отображения информации.

Принцип действия автоматических потенциометров основан на применении следящего электромеханического контура автоматического регулирования. Измеряемое напряжение и напряжение с движка реохорда подаются на дифференциальный усилитель рассогласования, выход которого через усилитель мощности управляет реверсивным электродвигателем. Электродвигатель через механические элементы (тросики, шестерни) перемещает движок реохорда в нужную сторону так, чтобы свести сигнал рассогласования к нулю. Движок реохорда жёстко связан с указывающей стрелкой, перемещающейся по оцифрованной в единицах измеряемой величины шкале. Шкала не обязательно должна быть оцифрована в единицах напряжения; например, при работе прибора в комплекте с каким-либо термопреобразователем может быть оцифрована в градусах температуры; при работе со стеклянным электродом может быть оцифрована в единицах pH (pH-метр). В самопишущих приборах одновременно со стрелкой перемещается перо по бумаге. Перо чертит на бумаге линию и тем самым регистрирует изменение измеряемой величины, обычно, в зависимости от времени.


Литература и документация

  • Шаблон:Книга
  • Справочник по электроизмерительным приборам; Под ред. К. К. Илюнина — Л.:Энергоатомиздат, 1983

Примечания

Шаблон:Примечания