Шаблон:Falseredirect
В теории чисел праймориальным простым числом называется простое число вида pn# ± 1, где pn# — праймориал pn (то есть произведение первых n простых чисел).
- pn# − 1 является простым для n = 2, 3, 5, 6, 13, 24, … Шаблон:OEIS
- pn# + 1 является простым для n = 1, 2, 3, 4, 5, 11, … Шаблон:OEIS
Несколько первых праймориальных простых:
- 3, 5, 7, 29, 31, 211, 2309, 2311, Шаблон:Num, Шаблон:Num, Шаблон:Num, … Шаблон:OEIS.
Максимальным известным праймориальным простым числом вида "pn# − 1" является число 3267113# - 1 с 1418398 знаками, оно было найдено в проекте PrimeGrid в 2021 году[1].
Максимальным известным праймориальным простым числом вида "pn# + 1" является число 392113# + 1 с 169966 знаками, оно было найдено Даниэлем Хойером в 2001 году[2].
Числа Евклида
Числа вида pn# + 1 (не обязательно простые) называются числами Евклида.
Несколько первых чисел Евклида:
- 3, 7, 31, 211, 2311, Шаблон:Num, Шаблон:Num, … Шаблон:OEIS.
Широко распространено мнение, что идея праймориальных простых принадлежит Евклиду и появилась в его доказательстве бесконечности числа простых чисел:
Предположим, что существует только n простых чисел, тогда число pn# + 1 взаимно просто с ними, а значит либо оно является простым, либо существует ещё одно простое число.
Шаблон:Unsolved
Открытой проблемой остаётся, конечно или бесконечно количество праймориальных простых чисел (и, в частности, простых чисел Евклида).
Число Евклида E6 = 13# + 1 = 30031 = 59 x 509 составное, что демонстрирует, что не все числа Евклида — простые.
Числа Евклида не могут быть квадратными, поскольку они всегда сравнимы с 3 mod 4.
Для всех n ≥ 3 последний знак En равен 1, поскольку En − 1 делится на 2 и 5.
См. также
Примечания
Шаблон:Примечания
Ссылки
- A. Borning, «Some Results for <math>k! + 1</math> and <math>2 \cdot 3 \cdot 5 \cdot p + 1</math>» Math. Comput. 26 (1972): 567—570.
- Chris Caldwell, The Top Twenty: Primorial Шаблон:Wayback at The Prime Pages.
- Шаблон:MathWorld
- Harvey Dubner, «Factorial and Primorial Primes.» J. Rec. Math. 19 (1987): 197—203.
- Paulo Ribenboim, The New Book of Prime Number Records. New York: Springer-Verlag (1989): 4.
Шаблон:Rq
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|