Приведённые гомологии — незначительная модификация теории гомологий, позволяющая формулировать некоторые утверждения алгебраической топологии, как например двойственность Александера, без исключительных случаев.
Приведённые гомологии и когомологии обычно обозначающийся волной.
При этом отличие от обычных гомологий проявляется только в нулевой размерности;
то есть <math> H_0(X) = \tilde{H}_0(X) \oplus \mathbb{Z}</math> и <math>H_n(X) = \tilde{H}_n(X)</math> для всех положительных n.
Цепной комплекс
В обычном определении гомологии пространства, строится по цепному комплексу
- <math>\dotsb\overset{\partial_{n+1}}{\longrightarrow\,}C_n
\overset{\partial_n}{\longrightarrow\,}C_{n-1}
\overset{\partial_{n-1}}{\longrightarrow\,}
\dotsb
\overset{\partial_2}{\longrightarrow\,}
C_1
\overset{\partial_1}{\longrightarrow\,}
C_0\overset{\partial_0}{\longrightarrow\,} 0</math>
и определяются как факторы
<math>H_n(X) = \ker(\partial_n) / \mathrm{im}(\partial_{n+1})</math>
Чтобы определить приведённые гомологии, следует воспользоваться тем же определением для дополненного цепного комплекса
- <math>\dotsb\overset{\partial_{n+1}}{\longrightarrow\,}C_n
\overset{\partial_n}{\longrightarrow\,}C_{n-1}
\overset{\partial_{n-1}}{\longrightarrow\,}
\dotsb
\overset{\partial_2}{\longrightarrow\,}
C_1
\overset{\partial_1}{\longrightarrow\,}
C_0\overset{\epsilon}{\longrightarrow\,} \mathbb{Z} \to 0
</math>
Литература
- Вик Дж. У. Теория гомологий. Введение в алгебраическую топологию. — Шаблон:М: МЦНМО, 2005
- Дольд А. Лекции по алгебраической топологии. — Шаблон:М: Мир, 1976
- Дубровин Б. А., Новиков С. П., Фоменко А. Т. Современная геометрия: Методы теории гомологий. — Шаблон:М: Наука, 1984
- Зейферт Г., Трельфалль В. Топология. — Ижевск: РХД, 2001
- Лефшец С. Алгебраическая топология. — Шаблон:М: ИЛ, 1949
- Новиков П. С. Топология. — 2 изд. испр. и доп. — Ижевск: Институт компьютерных исследований, 2002
- Прасолов В. В. Элементы теории гомологий. — Шаблон:М: МЦНМО, 2006
- Свитцер Р. М. Алгебраическая топология. — гомотопии и гомологии. — Шаблон:М: Наука, 1985
- Спеньер Э. Алгебраическая топология. — Шаблон:М: Мир, 1971
- Стинрод Н., Эйленберг С. Основания алгебраической топологии. — Шаблон:М: Физматгиз, 1958
- Фоменко А. Т., Фукс Д. Б. Курс гомотопической топологии. — Шаблон:М: Наука, 1989
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|