Принцип разделимости (или принцип отделимости) — один из принципов доказательств в математике, основанный на том, что некоторые не пересекающиеся множества могут быть некоторым образом разделены в пространстве. Являясь всего лишь принципом (а не аксиомой), принцип разделимости требует доказательства обоснованности применения в каждом конкретном случае.
Применение принципа разделимости существенно основано на выполнении аксиом отделимости для данного пространства.
Отделимость в евклидовом пространстве
В конечномерном евклидовом пространстве <math>\mathbb R^n</math> принцип разделимости работает всегда, в том смысле, что для любых двух замкнутых непересекающихся множеств существует поверхность, разделяющая пространство на две непересекающиеся части так, что каждое множество целиком принадлежит одной из этих частей.
Отделимость в банаховом пространстве
В функциональных (в частности, банаховых) пространствах достаточно сложно гарантировать отделимость произвольных множеств. Тем не менее, в частных случаях задача решается достаточно легко. Например:
- Любые два непересекающихся выпуклых множества, одно из которых имеет непустую внутренность, можно разделить гиперплоскостью.
- Любые два непересекающихся замкнутых выпуклых множества, одно из которых компактно, можно сильно разделить гиперплоскостью.
Связанные определения
Множества A и B в банаховом пространстве называются разделимыми, если существует такой функционал p, что для любых <math>a\in A</math>, <math>b\in B</math>
- <math>\langle p, a\rangle \le \langle p, b \rangle</math>
Множества A и B в банаховом пространстве называются сильно разделимыми, если существует такой функционал p, что для любых <math>a\in A</math>, <math>b\in B</math>
- <math>\langle p, a\rangle < k < \langle p, b \rangle, \, k\in \mathcal{R}</math>
Применение
Принцип разделимости используется при доказательстве многих сильных геометрических утверждений. В частности, с его помощью обосновываются опорный принцип и теорема Фенхеля — Моро.
См. также
Литература
- Половинкин Е. С, Балашов М. В. Элементы выпуклого и сильно выпуклого анализа. — Шаблон:М: Физматлит, 2004. — 416 с — ISBN 5-9221-0499-3
Шаблон:Rq
Шаблон:Math-stub
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|