Русская Википедия:Причинные множества

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Причинные множества — направление исследований в квантовой гравитации, основанное на математической гипотезе о дискретной структуре пространства-времени и о частичной упорядоченности его точек, физически означающей Шаблон:Не переведено 5 между событиями в них с сохранением лоренцевской инвариантности.

В теории причинных множеств важную роль играет теорема[1] Дэвида Маламента (Шаблон:Iw), которая гласит, что если существует биективное отображение между двумя Шаблон:Не переведено 5 областями пространства-времени, которое сохраняет их причинную структуру, то это отображение является конформно изоморфным. Конформный множитель, который остается неопределенным, связан с объемом областей в пространстве-времени. Его можно найти, указав элемент объема для каждой точки пространства-времени. Общий объем области пространства-времени затем может быть найден путем подсчета количества точек в этой области.

Определение

Причинным множеством называется множество <math>C</math> с отношением частичной упорядоченности <math>\preceq</math>, обладающее свойствами:

  • Рефлексивность: Для всех <math>x \in C</math>, выполняется <math> x \preceq x </math>.
  • Антисимметричность: Для всех <math>x, y \in C</math> из справедливости <math> x \preceq y</math> и <math>y \preceq x</math> следует <math>x = y</math>.
  • Транзитивность: Для всех <math>x, y, z \in C</math>, из справедливости <math> x \preceq y</math> и <math>y \preceq z </math> следует <math> x \preceq z </math>.
  • Шаблон:Не переведено 5: Для всех <math>x, z \in C</math>, выполняется <math>|\{y \in C | x \preceq y \preceq z\}| < \aleph_0</math>.

Если <math>x \preceq y </math> и <math>x \neq y</math>, то используют обозначение <math>x \prec y</math>.

Множество <math>C</math> представляет набор событий пространства-времени, а отношение порядка <math>\preceq</math> представляет причинно-следственную связь между событиями (аналогичную идею в лоренцевом многообразии см. Шаблон:Не переведено 5).

Хотя в этом определении используется рефлексивное соглашение, мы могли бы выбрать нерефлексивное соглашение, в котором отношение порядка нерефлексивно.

Шаблон:Не переведено 5 лоренцева многообразия (без замкнутой Шаблон:Не переведено 5) удовлетворяет первым трем условиям. Это условие локальной конечности, которое вводит дискретность пространства-времени.

См. также

Примечания

Шаблон:Примечания

Дальнейшее чтение

Шаблон:Refbegin

Введения и обзоры
Основы теории
Диссертации
Обсуждения
Теория многообразий
  • L. Bombelli, D.A. Meyer; The origin of Lorentzian geometry; Phys. Lett. A 141:226-228 (1989); (Manifoldness)
  • L. Bombelli, R.D. Sorkin, When are Two Lorentzian Metrics close?, General Relativity and Gravitation, proceedings of the 12th International Conference on General Relativity and Gravitation, held July 2-8, 1989, in Boulder, Colorado, USA, under the auspices of the International Society on General Relativity and Gravitation, 1989, p. 220; (Closeness of Lorentzian manifolds)
  • L. Bombelli, Causal sets and the closeness of Lorentzian manifolds, Relativity in General: proceedings of the Relativity Meeting "93, held September 7-10, 1993, in Salas, Asturias, Spain. Edited by J. Diaz Alonso, M. Lorente Paramo. Шаблон:ISBN. Published by Editions Frontieres, 91192 Gif-sur-Yvette Cedex, France, 1994, p. 249; (Closeness of Lorentzian manifolds)
  • L. Bombelli, Statistical Lorentzian geometry and the closeness of Lorentzian manifolds, J. Math. Phys.41:6944-6958 (2000); arXiv:gr-qc/0002053 (Closeness of Lorentzian manifolds, Manifoldness)
  • A.R. Daughton, An investigation of the symmetric case of when causal sets can embed into manifolds, Class. Quantum Grav.15(11):3427-3434 (Nov., 1998) (Manifoldness)
  • J. Henson, Constructing an interval of Minkowski space from a causal set, Class. Quantum Grav. 23 (2006) L29-L35; arXiv:gr-qc/0601069; (Continuum limit, Sprinkling)
  • S. Major, D.P. Rideout, S. Surya, On Recovering Continuum Topology from a Causal Set, J.Math.Phys.48:032501,2007; arXiv:gr-qc/0604124 (Continuum Topology)
  • S. Major, D.P. Rideout, S. Surya; Spatial Hypersurfaces in Causal Set Cosmology; Class. Quantum Grav. 23 (2006) 4743-4752; arXiv:gr-qc/0506133v2; (Observables, Continuum topology)
  • S. Major, D.P. Rideout, S. Surya, Stable Homology as an Indicator of Manifoldlikeness in Causal Set Theory, arXiv:0902.0434 (Continuum topology and homology)
  • D.A. Meyer, The Dimension of Causal Sets I: Minkowski dimension, Syracuse University preprint (1988); (Dimension theory)
  • D.A. Meyer, The Dimension of Causal Sets II: Hausdorff dimension, Syracuse University preprint (1988); (Dimension theory)
  • D.A. Meyer, Spherical containment and the Minkowski dimension of partial orders, Order 10: 227—237 (1993); (Dimension theory)
  • J. Noldus, A new topology on the space of Lorentzian metrics on a fixed manifold, Class. Quant. Grav 19: 6075-6107 (2002); (Closeness of Lorentzian manifolds)
  • J. Noldus, A Lorentzian Gromov-Hausdorff notion of distance, Class. Quantum Grav. 21, 839—850, (2004); (Closeness of Lorentzian manifolds)
  • D.D. Reid, Manifold dimension of a causal set: Tests in conformally flat spacetimes, Phys. Rev. D67 (2003) 024034; arXiv:gr-qc/0207103v2 (Dimension theory)
  • S. Surya, Causal Set Topology; arXiv:0712.1648
Геометрия
Вычисление космологической постоянной
  • M. Ahmed, S. Dodelson, P.B. Greene, R.D. Sorkin, Everpresent lambda; Phys. Rev. D69, 103523, (2004) arXiv:astro-ph/0209274v1; (Cosmological Constant)
  • Y. Jack Ng and H. van Dam, A small but nonzero cosmological constant; Int. J. Mod. Phys D. 10 : 49 (2001) arXiv:hep-th/9911102v3; (PreObservation Cosmological Constant)
  • Y. Kuznetsov, On cosmological constant in Causal Set theory; arXiv:0706.0041
  • R.D. Sorkin, A Modified Sum-Over-Histories for Gravity; reported in Highlights in gravitation and cosmology: Proceedings of the International Conference on Gravitation and Cosmology, Goa, India, 14-19 December 1987, edited by B. R. Iyer, Ajit Kembhavi, Jayant V. Narlikar, and C. V. Vishveshwara, see pages 184—186 in the article by D. Brill and L. Smolin: «Workshop on quantum gravity and new directions», pp 183—191 (Cambridge University Press, Cambridge, 1988); (PreObservation Cosmological Constant)
  • R.D. Sorkin; On the Role of Time in the Sum-over-histories Framework for Gravity, paper presented to the conference on The History of Modern Gauge Theories, held Logan, Utah, July 1987; Int. J. Theor. Phys. 33 : 523—534 (1994); (PreObservation Cosmological Constant)
  • R.D. Sorkin, First Steps with Causal Sets Шаблон:Webarchive, in R. Cianci, R. de Ritis, M. Francaviglia, G. Marmo, C. Rubano, P. Scudellaro (eds.), General Relativity and Gravitational Physics (Proceedings of the Ninth Italian Conference of the same name, held Capri, Italy, September, 1990), pp. 68-90 (World Scientific, Singapore, 1991); (PreObservation Cosmological Constant)
  • R.D. Sorkin; Forks in the Road, on the Way to Quantum Gravity, talk given at the conference entitled «Directions in General Relativity», held at College Park, Maryland, May, 1993; Int. J. Th. Phys. 36 : 2759—2781 (1997) arXiv:gr-qc/9706002; (PreObservation Cosmological Constant)
  • R.D. Sorkin, Discrete Gravity; a series of lectures to the First Workshop on Mathematical Physics and Gravitation, held Oaxtepec, Mexico, Dec. 1995 (unpublished); (PreObservation Cosmological Constant)
  • R.D. Sorkin, Big extra dimensions make Lambda too small; arXiv:gr-qc/0503057v1; (Cosmological Constant)
  • R.D. Sorkin, Is the cosmological «constant» a nonlocal quantum residue of discreteness of the causal set type?; Proceedings of the PASCOS-07 Conference, July 2007, Imperial College London; arXiv:0710.1675; (Cosmological Constant)
  • J. Zuntz, The CMB in a Causal Set Universe, arXiv:0711.2904 (CMB)
Лоренцевская инвариантность
  • L. Bombelli, J. Henson, R.D. Sorkin; Discreteness without symmetry breaking: a theorem; arXiv:gr-qc/0605006v1; (Lorentz invariance, Sprinkling)
  • F. Dowker, J. Henson, R.D. Sorkin, Quantum gravity phenomenology, Lorentz invariance and discreteness; Mod. Phys. Lett. A19, 1829—1840, (2004) arXiv:gr-qc/0311055v3; (Lorentz invariance, Phenomenology, Swerves)
  • F. Dowker, J. Henson, R.D. Sorkin, Discreteness and the transmission of light from distant sources; arXiv:1009.3058 (Coherence of light, Phenomenology)
  • J. Henson, Macroscopic observables and Lorentz violation in discrete quantum gravity; arXiv:gr-qc/0604040v1; (Lorentz invariance, Phenomenology)
  • N. Kaloper, D. Mattingly, Low energy bounds on Poincaré violation in causal set theory; Phys. Rev. D 74, 106001 (2006) arXiv:astro-ph/0607485 (Poincaré invariance, Phenomenology)
  • D. Mattingly, Causal sets and conservation laws in tests of Lorentz symmetry; Phys. Rev. D 77, 125021 (2008) arXiv:0709.0539 (Lorentz invariance, Phenomenology)
  • L. Philpott, F. Dowker, R.D. Sorkin, Energy-momentum diffusion from spacetime discreteness; arXiv:0810.5591 (Phenomenology, Swerves)
Энтропия черных дыр
  • D. Dou, Black Hole Entropy as Causal Links; Fnd. of Phys, 33 2:279-296(18) (2003); arXiv:gr-qc/0302009v1 (Black hole entropy)
  • D.P. Rideout, S. Zohren, Counting entropy in causal set quantum gravity ; arXiv:gr-qc/0612074v1; (Black hole entropy)
  • D.P. Rideout, S. Zohren, Evidence for an entropy bound from fundamentally discrete gravity; Class. Quantum Grav. 23 (2006) 6195-6213; arXiv:gr-qc/0606065v2 (Black hole entropy)
Локальность и квантовая теория поля
Динамика
  • M. Ahmed, D. Rideout, Indications of de Sitter Spacetime from Classical Sequential Growth Dynamics of Causal Sets; arXiv:0909.4771
  • A.Ash, P. McDonald, Moment Problems and the Causal Set Approach to Quantum Gravity; J.Math.Phys. 44 (2003) 1666—1678; arXiv:gr-qc/0209020
  • A.Ash, P. McDonald, Random partial orders, posts, and the causal set approach to discrete quantum gravity; J.Math.Phys. 46 (2005) 062502 (Analysis of number of posts in growth processes)
  • D.M.T. Benincasa, F. Dowker, The Scalar Curvature of a Causal Set; arXiv:1001.2725; (Scalar curvature, actions)
  • G. Brightwell; M. Luczak; Order-invariant Measures on Causal Sets; arXiv:0901.0240; (Measures on causal sets)
  • G. Brightwell; M. Luczak; Order-invariant Measures on Fixed Causal Sets; arXiv:0901.0242; (Measures on causal sets)
  • G. Brightwell, H.F. Dowker, R.S. Garcia, J. Henson, R.D. Sorkin; General covariance and the «problem of time» in a discrete cosmology; In ed. K. Bowden, Correlations:Proceedings of the ANPA 23 conference, August 16-21, 2001, Cambridge, England, pp. 1-17. Alternative Natural Philosophy Association, (2002).;arXiv:gr-qc/0202097; (Cosmology, Dynamics, Observables)
  • G. Brightwell, H.F. Dowker, R.S. Garcia, J. Henson, R.D. Sorkin; «Observables» in causal set cosmology; Phys. Rev. D67, 084031, (2003); arXiv:gr-qc/0210061; (Cosmology, Dynamics, Observables)
  • G. Brightwell, J. Henson, S. Surya; A 2D model of Causal Set Quantum Gravity: The emergence of the continuum; arXiv:0706.0375; (Quantum Dynamics, Toy Model)
  • G.Brightwell, N. Georgiou; Continuum limits for classical sequential growth models University of Bristol preprint. (Dynamics)
  • A. Criscuolo, H. Waelbroeck; Causal Set Dynamics: A Toy Model; Class. Quantum Grav.16:1817-1832 (1999); arXiv:gr-qc/9811088; (Quantum Dynamics, Toy Model)
  • F. Dowker, S. Surya; Observables in extended percolation models of causal set cosmology;Class. Quantum Grav. 23, 1381—1390 (2006); arXiv:gr-qc/0504069v1; (Cosmology, Dynamics, Observables)
  • M. Droste, Universal homogeneous causal sets, J. Math. Phys. 46, 122503 (2005); arXiv:gr-qc/0510118; (Past-finite causal sets)
  • J. Henson, D. Rideout, R.D. Sorkin, S. Surya; Onset of the Asymptotic Regime for (Uniformly Random) Finite Orders; Experimental Mathematics 26, 3:253-266 (2017); (Cosmology, Dynamics)
  • A.L. Krugly; Causal Set Dynamics and Elementary Particles; Int. J. Theo. Phys 41 1:1-37(2004);; (Quantum Dynamics)
  • X. Martin, D. O’Connor, D.P. Rideout, R.D. Sorkin; On the «renormalization» transformations induced by cycles of expansion and contraction in causal set cosmology; Phys. Rev. D 63, 084026 (2001); arXiv:gr-qc/0009063 (Cosmology, Dynamics)
  • D.A. Meyer; Spacetime Ising models; (UCSD preprint May 1993); (Quantum Dynamics)
  • D.A. Meyer; Why do clocks tick?; General Relativity and Gravitation 25 9:893-900;; (Quantum Dynamics)
  • I. Raptis; Quantum Space-Time as a Quantum Causal Set, arXiv:gr-qc/0201004v8
  • D.P. Rideout, R.D. Sorkin; A classical sequential growth dynamics for causal sets, Phys. Rev. D, 6, 024002 (2000);arXiv:gr-qc/9904062 (Cosmology, Dynamics)
  • D.P. Rideout, R.D. Sorkin; Evidence for a continuum limit in causal set dynamics Phys. Rev. D 63:104011,2001; arXiv:gr-qc/0003117(Cosmology, Dynamics)
  • R.D. Sorkin; Indications of causal set cosmology; Int. J. Theor. Ph. 39(7):1731-1736 (2000); arXiv:gr-qc/0003043; (Cosmology, Dynamics)
  • R.D. Sorkin; Relativity theory does not imply that the future already exists: a counterexample; Relativity and the Dimensionality of the World, Vesselin Petkov (ed.) (Springer 2007, in press); arXiv:gr-qc/0703098v1; (Dynamics, Philosophy)
  • M. Varadarajan, D.P. Rideout; A general solution for classical sequential growth dynamics of Causal Sets; Phys. Rev. D 73 (2006) 104021; arXiv:gr-qc/0504066v3; (Cosmology, Dynamics)
  • Шаблон:Cite journal;(Dynamics, Poset)

Шаблон:Refend

Ссылки