Проблема разрешения (Шаблон:Lang-de) — задача из области оснований математики, сформулированная Давидом Гильбертом в 1928 году: найти алгоритм, который бы принимал в качестве входных данных описание любой проблемы разрешимости (формального языка и математического утверждения «<math>S</math>» на этом языке) — и, после конечного числа шагов, останавливался бы и выдавал один из двух ответов: «Истина!» или «Ложь!», — в зависимости от того, истинно или ложно утверждение «<math>S</math>». Ответ не требует обоснований, но должен быть верным.
Такой алгоритм мог бы, к примеру, подтвердить гипотезу Гольдбаха и гипотезу Римана несмотря на то, что доказательства (и опровержения) пока неизвестны. Нерешаемость проблемы разрешения (неразрешимость множества истинных формул арифметики) для языка арифметики, содержащего «равенство», «сложение» и «умножение», является следствием неарифметичности этого множества. Неарифметичность является следствием теоремы Тарского «о невыразимости понятия истинности в языке средствами того же языка»[1].
В 1936 году — Алонзо Чёрч и независимо от него Алан Тьюринг опубликовали работы, в которых показали, что не существует алгоритма для определения истинности утверждений арифметики, а поэтому и более общая проблема разрешения также не имеет решения. Этот результат получил название: «теорема Чёрча — Тьюринга».
См. также
Примечания
Шаблон:Примечания
Литература
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|
- ↑ В. А. Успенский, А. Л. Семёнов Теория алгоритмов: основные открытия и приложения, М., Наука, 1987, 288 c., 2.3 Приложения к математической логике: анализ формализованных языков логики и арифметики