Русская Википедия:Проблемы Смейла

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Проблемы Смейла — список из восемнадцати нерешённых математических проблем, предложенный Стивеном Смейлом в 2000 году[1]. Смейл составил свой список по просьбе Владимира Арнольда, занимавшего в 1995–1998 годах пост вице-президента международного математического союза. Идею этого списка Владимир Арнольд взял из списка проблем Гильберта.

Список проблем

Формулировка Комментарий
1 Гипотеза Римана Не доказана.
2 Гипотеза Пуанкаре Доказана Григорием Перельманом.
3 Равенство классов P и NP
4 Оценка количества целочисленных корней полиномов от одной переменной
5 Оценка вычислительной сложности решения полиномиальных диофантовых уравнений
6 Конечность количества точек относительного равновесия в небесной механике Доказана для частного случая пяти тел Аленом Альбуем (A. Albouy) и Вадимом Калошиным в 2012 году[2]
7 Распределение точек на сфере
8 Расширение математической теории общего равновесия на экономическую теорию
9 Полиномиальный алгоритм для определения допустимости систем линейных неравенств
10 Обобщение Шаблон:Нп5 для случая большей гладкости Доказана для определённого класса диффеоморфизмов[3]
11 Является ли одномерная динамика гиперболичной в общем случае? Решена для вещественного случая[4]
12 Централизаторы диффеоморфизмов Решена для <math>C^1</math>-топологии Кристианом Бонатти (Christian Bonatti), Сильвеном Кровизье (Sylvain Crovisier) и Эми Уилкинсон (Amie Wilkinson) в 2008 году[5]
13 Шестнадцатая проблема Гильберта
14 Аттрактор Лоренца Решена Уориком Такером при помощи дискретной алгебры[6].
15 Существование и гладкость решений уравнений Навье — Стокса
16 Проблема якобиана
17 Решение систем алгебраических уравнений Частично решена К. Белтраном и Л. Мигелем Пардо (см. класс BPP)[7], позже решена окончательно[8]
18 Выяснение пределов искусственного и человеческого интеллектов

Примечания

Шаблон:Примечания

Ссылки