Простая группа — группа, не имеющая нормальных подгрупп, отличных от всей группы и единичной подгруппы.
Конечные простые группы полностью классифицированы в 1982.
В теории бесконечных групп значение простых групп значительно меньше ввиду их необозримости.
В теории групп Ли и алгебраических групп определение простой группы несколько отличается от приведенного, см. простая группа Ли.
Примеры
Конечные простые группы
Циклическая группа <math>G=\mathbb Z/5 \mathbb Z</math> проста. Действительно, если <math>H</math>— подгруппа <math>G</math>, то порядок <math>H</math> по теореме Лагранжа должен делить порядок <math>G</math>, равный 5. Единственными делителями 5 являются 1 или 5, то есть <math>H</math> либо тривиальна, либо совпадает с <math>G</math>. Наоборот, группа <math>\mathbb Z/ 12 \mathbb Z</math> простой не является, так как множество, состоящее из классов чисел 0, 4 и 8 по модулю 12, образует группу порядка 3, которая нормальна как подгруппа абелевой группы. Группа <math>\mathbb Z</math> целых чисел с операцией сложения также не является простой, поскольку множество чётных чисел есть нетривиальная нормальная подгруппа в <math>\mathbb Z</math>. Аналогичными рассуждениями можно убедиться, что всевозможные простые абелевы группы — это в точности циклические группы простого порядка.
Классификация простых неабелевых групп существенно сложнее. Простая неабелева группа наименьшего порядка — знакопеременная группа <math>A_5</math> порядка 60, при этом любая простая группа порядка 60 изоморфна <math>A_5</math>. Более того, простыми являются все группы <math>A_n</math> при <math>n \geqslant 5</math>. Следующая по количеству элементов простая неабелева группа после <math>A_5</math>— специальная проективная группа <math>PSL(2,7)</math> порядка 168. Можно доказать, что любая простая группа порядка 168 изоморфна <math>PSL(2,7)</math>.
Бесконечные простые группы
Простой является группа всех чётных подстановок, каждая из которых перемещает конечное подмножество элементов бесконечного множества <math>X</math>; в частности, если множество <math>X</math>счётно, это бесконечная знакопеременная группа <math>A_{\infty}</math>. Ещё одним семейством примером служат <math>PSL_n(\mathbb F)</math>, где поле <math>\mathbb F</math> бесконечно и <math>n \geqslant 2</math>.
Существуют конечно порождённые и даже конечно определённые бесконечные простые группы.
Свойства
- Всякая группа вложима в простую группу.
См. также
Шаблон:Rq
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|