Русская Википедия:Процесс Бергиуса

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Файл:Friedrich Bergius (1884-1949) Chemist of Heidelberg Wellcome L0003155.jpg
Фридрих Бергиус

Процесс Бергиуса (также процесс Бергиуса-Пьера) — способ производства жидких углеводородов, предназначенных для использования в качестве синтетического топлива путем гидрирования углерода при высоких температурe и давлении (Прямое сжижение угля). Другое сырье, такое как каменноугольная смола и битум, также может быть использовано в этом процессе. Впервые он был разработан Фридрихом Бергиусом в 1913 году, который позже получил Нобелевскую премию по химии (в 1931 году) совместно с Карлом Бошем за их общие заслуги в области открытия и разработки химических процессов высокого давления.[1]

История

В 1913 году Фридрих Бергиус разработал способ Шаблон:Нп4 моторных жидких топлив путём насыщения водородом смеси, состоящей из измельчённого угля и смолообразных отходов производства кокса и генераторного газа под давлением выше 20 МН/м² (200 кгс/см2, 200 атм.) и температуре порядка 500 °C. Патент был приобретён у Бергиуса концерном «И. Г. Фарбениндустри», и применялся с использованием катализаторов. По этому способу нацистская Германия во время 2-й мировой войны получала значительное количество бензина.

Процесс

Если в качестве сырья для процесса использовался уголь или лигнит, его тонко измельчали ​​и сушили на первом этапе процесса. Сырье, добавки и катализаторы смешивают в суспензии с использованием густого масла, которое извлекают из процесса. Типичными добавками и катализаторами были такие вещества, как олово, хлор, оксид железа, сульфид натрия, коксовая пыль, сульфат железа и триоксид молибдена. Какие добавки и катализаторы использовались, зависело от сырья и рабочего давления на установке. Приготовленную суспензию перекачивали в жидкую фазу процесса.

Многочисленные катализаторы были разработаны в течение многих лет, в том числе сульфидов вольфрама или молибдена, олеиновая кислота из олова или никеля, и другиe. Альтернативно, возможно, что сульфиды железа, присутствующие в угле, имеют достаточную каталитическую активность для процесса, который был исходным процессом Бергиуса.

Файл:Bergius-Pier.svg
Блок-схема процесса Бергиуса[2]

Производство водорода

Файл:Winkler-Generator.svg
Схематический вид реактора Винклера для получения водорода.

Производство водорода, необходимого для процесса Бергиуса, осуществлялось путем газификации углерода в реакторе с кипящим слоем Винклера. Порошковый углерод (уголь) вдувается в реактор вместе с кислородом и водяным паром. В ряде экзотермических и эндотермических реакций углерод реагирует с кислородом и водой с образованием диоксида углерода и водорода. Сжигание углерода с кислородом образует окись углерода (реакция 1), которая дала энергию для эндотермического образования газообразного водорода (реакция 2). Угарный газ вступает в обратимую реакцию с углеродом и углекислым газом (реакция 3). В обратимой реакции монооксид углерода может реагировать с водой с образованием диоксида углерода и водорода (реакция 4).

<math>

\begin{array}{lrcll} \text{(1)} & \mathrm{2\ C\ +\ O_2} & \longrightarrow & \mathrm{2\ CO} \quad & \Delta H_R = \mathrm{-221\ \frac{\text{кДж}}{\text{моль}}}\\ \text{(2)} & \mathrm{C\ +\ H_2O} & \longrightarrow & \mathrm{CO\ +\ H_2} \quad & \Delta H_R = \mathrm{+134\ \frac{\text{кДж}}{\text{моль}}}\\ \text{(3)} & \mathrm{2\ CO} & \rightleftharpoons & \mathrm{C\ +\ CO_2} \quad & \Delta H_R = \mathrm{-172{,}5\ \frac{\text{кДж}}{\text{моль}}}\\ \text{(4)} & \mathrm{CO\ +\ H_2O} & \rightleftharpoons & \mathrm{CO_2\ +\ H_2} \quad & \Delta H_R = \mathrm{-41{,}2\ \frac{\text{кДж}}{\text{моль}}}\\ \hline & \mathrm{2\ C\ +\ 2\ H_2O\ +\ O_2} & \longrightarrow & \mathrm{2\ CO_2\ +\ 2\ H_2} \quad & \Delta H_R = \mathrm{-300{,}7\ \frac{\text{кДж}}{\text{моль}}} \end{array} </math>

Жидкая фаза

Файл:Vätskefas hydrogenering.svg
Диаграмма функции в жидкой фазе процесса Бергиуса

В жидкой фазе специальный поршневой насос увеличивал давление суспензии до рабочего давления в реакторе, обычно от 200 до 700 бар. Суспензию смешивали с водородом и газом полученным из самого процесса. Смесь пропускали через серию из двух-четырех теплообменников, где синтетическая сырая нефть из конечной стадии процесса нагревала смесь в котле, и, наконец, смесь нагревали до температуры процесса то есть между 460 и 485 ° С. Нагретую смесь подавали в серию из трех или четырех химических реакторов, где длинные углеводородные цепи сырья разделяются на более короткие цепи путем гидрирования. В результате получается синтетическая сырая нефть, содержащая горючий газ, водяной газ, дизельное топливо и вакуумный газойль . Когда реакция в реакторе является экзотермической, распределение температуры в реакторе контролировали путем закачки рециркулируемого газа. После процесса в реакторе остатки гидрирования, непрореагировавшее сырье, твердые частицы, кокс и тяжелый вакуумный газойль были отделены от газообразной синтетической сырой нефти. Остатки гидрирования были направлены в процесс переработки. Газообразную синтетическую сырую нефть сначала охлаждали в теплообменниках, которые предварительно нагревали технологическую смесь, а затем в водоохладителях. В результате образуются тяжелые масла, средние масла, бензин и газ. Общая реакция может быть обобщена следующим образом:

<math>n{\rm C} + (n - x + 1){\rm H}_2 \rarr {\rm C}_n{\rm H}_{2n - 2x + 2}</math> Непосредственный продукт реактора должен быть стабилизирован путем пропускания его через каталитический процесс крекинга (гидрокрекинг). Часть оставшегося газа должна быть перекачена обратно в процесс в качестве рециркулируемого газа. Жидкая синтетическая сырая нефть имела высокий уровень нафтенов и ароматических соединений, низкий уровень парафинов и очень низкий уровень олефинов . После рафинирования различные фракции могут быть могут быть переданы на дальнейшую обработку ( крекинг, риформинг) и преобразованы в синтетическое топливо с желаемыми свойствами.

При прохождении через такой процесс, как платформинг, большинство нафтенов превращаются в ароматические углеводороды, и восстановленный водород рециркулирует в процессе. В целом, приблизительно 97% поступающего углерода, поступающего непосредственно в процесс, можно преобразовать в синтетическое топливо. Однако любое количество углерода, используемого в производстве водорода, будет потеряно в виде диоксида углерода, что приведет к снижению общей эффективности использования углерода в процессе.

Существует остаток нереакционноспособных смоляных соединений, смешанных с углем и золой. Чтобы свести к минимуму потери углерода в остаточном потоке, необходимо иметь низкую подачу золы в процесс. Обычно уголь должен иметь зольность <10%. Водород, необходимый для процесса, также может быть получен из остатка путем паровой конверсии. Типичная потребность в водороде составляет ~ 8 кг водорода на тонну сухого малозольного угля. Продукт имеет три уровня: тяжелая нефть, средняя нефть, бензин. Средняя нефть гидрируется, чтобы получить больше бензина, а тяжелая нефть снова смешивается с углем, и процесс начинается снова.

Процесс переработки

Остатки процесса гидрирования охлаждали до температуры ниже 200 ° С в водяном холодильнике. Затем давление снижали и остатки смешивали с дизельным топливом, полученным после рафинирования, чтобы перекачать смесь в центрифугу . Из центрифуги получали густое масло с содержанием твердых веществ 2-12%. Густое масло перекачивали обратно в процесс приготовления, где оно использовалось для смешивания сырья в суспензию. Отходы от центрифугирования дожигали до кокса во вращающихся печах.

Использование

Во времена Третьего рейха в Германии был построен ряд предприятий по производству энергоносителей из угля, залежи которого в больших количествах находятся на территории страны. В основном производство базировалось на процессе Бергиуса, (для процесса Фишера—Тропша были выделены менее значительные мощности). До конца Второй мировой войны было реализовано в общем мощностей для производства до 4,275 миллионов тонн в год с помощью первого и до 1,55 млн т в год с помощью последнего процесса. Обе отрасли оказались неконкурентоспособными по сравнению с нефтедобывающей и были остановлены по окончании войны.

См. также

Примечания

Шаблон:Примечания

Шаблон:Органическое топливо