Русская Википедия:Рыбий глаз (объектив)
Шаблон:Другие значения Ры́бий гла́з («Фишай», транскрипция от Шаблон:Lang-en) — разновидность сверхширокоугольных объективов с целенаправленно увеличенной дисторсией, другое название дисторси́рующий (или «дисторзирующий») объективШаблон:Sfn. От обычных (ортоскопических) короткофокусных объективов отличается ярко выраженной бочкообразной дисторсиейШаблон:Sfn, позволяющей отображать пространство и предметы при помощи азимутальной, ортографической или стереографической проекций, в зависимости от конкретной оптической конструкции. За счёт сильных искажений угловое поле «рыбьего глаза» может достигать 180° или даже превышать эту величину, что недоступно для ортоскопической оптики, реализующей гномоническую проекцию окружающего пространстваШаблон:Sfn.
Главной особенностью объективов типа «Рыбий глаз» являются характерные искажения, сходные с видом отражения в зеркальной сфере. Прямые линии, не пересекающие оптическую ось, отображаются в виде дугообразных кривых, а предметы по мере удаления от центра к краям кадра сильно сжимаются в радиальном направлении[1]. При этом, рекордный полусферический обзор не является обязательным свойством рыбьего глаза, и у некоторых объективов этого типа поле зрения не превышает 120—160° при таких же искажениях. У дисторсирующих зум-объективов обзор может сужаться ещё сильнее[2]Шаблон:Ref+.
Историческая справка
Шаблон:Main Название «рыбий глаз» подчёркивает сходство изображения, даваемого таким объективом, с эффектом «окна Снелла», благодаря которому подводные обитатели видят всю верхнюю полусферу надводного мира в пределах конуса шириной около 90 градусов[3]. Это объясняется законом Снеллиуса, то есть, резким перепадом показателя преломления на границе воды и воздуха. Впервые термин «рыбий глаз» использовал в 1911 году американский физик-экспериментатор Роберт Вуд (Шаблон:Lang-en) в своей книге «Физическая оптика»Шаблон:Sfn. За 5 лет до этого он смоделировал подобную оптическую систему, поместив на дно ведра, заполненного водой, фотопластинку, а на половине глубины над ней линзу с точечной диафрагмойШаблон:Sfn. Полученное изображение, несмотря на низкое качество, продемонстрировало возможность получения полусферического обзора[3]. В дальнейшем Вуд усовершенствовал съёмочную камеру, заполнив водой герметичную металлическую коробку с отверстием[4].
Приоритет в создании дисторсирующего объектива принадлежит английскому биохимику Робину (Роберту) Хиллу (Шаблон:Lang-en), запатентовавшему в декабре 1923 года трёхлинзовую оптическую систему, состоящую из сильного отрицательного мениска, расположенного перед положительным склеенным ахроматомШаблон:Sfn. Такое устройство могло обеспечить угловое поле, охватывающее небосвод целиком, и достаточное для регистрации всей облачности[5]. При этом за счёт неисправленной дисторсии становится доступным поле зрения 180° на изображении конечного размера. Ортоскопический объектив не способен обеспечить такой охват, поскольку размеры изображения в этом случае стремятся к бесконечностиШаблон:Sfn.
Первый объектив Хилла под названием Hill Sky Lens изготовлен в 1924 году лондонской компанией Beck of London[6]Шаблон:Sfn. Несмотря на чрезвычайно низкую светосилу f/22, объектив давал вполне чёткое изображение в форме круга, и позволял одним кадром снимать всю небесную полусферу при помощи камеры с тем же названием Hill Sky Camera. В 1929 году советский оптик Владимир Чуриловский рассчитал оптическую схему аналогичной широкоугольной камеры, объектив которой состоит из двухлинзового отрицательного дистортера и расположенного за ним ортоскопического объектива типа «Тессар». Комбинация обеспечивала угловое поле 127° при светосиле f/5,6Шаблон:Sfn. В 1933 году на основе объектива Чуриловского реализована технология аэрофотосъёмки больших площадей местности с дешифровкой снимков оптическим ортотрансформатором, вносящим обратные искаженияШаблон:Sfn.
Вскоре светосильный «рыбий глаз» был создан и в Германии: в 1932 году компанией AEG получен патент № 620 538 на пятилинзовый Weitwinkelobjektiv, разработанный Гансом Шульцем (Шаблон:Lang-de)Шаблон:SfnШаблон:SfnШаблон:Sfn. Объектив был настолько хорош, что позволял вести моментальную съёмку, и уже в 1935 году фотохудожник Умбо снимал им эффектные репортажи[8]. В 1938 году на основе немецкой разработки, доставшейся Японии в рамках Стального пакта, создан Fish-eye Nikkor 16/8,0, после войны выпускавшийся в составе камеры для «рольфильма»Шаблон:Sfn[9][10]. В том же году немецкий оптик Роберт Рихтер (Шаблон:Lang-de) сконструировал шестилинзовый Zeiss Pleon, который использовался во время Второй мировой войны для фоторазведки[11]Шаблон:Sfn. Современный «рыбий глаз» для малоформатных фотоаппаратов и «кропнутых» цифровых камер ведёт своё происхождение от следующей немецкой разработки Zeiss Sphaerogon, сконструированной перед войной оптиком Вилли Мертэ (Шаблон:Lang-de), и в 1947 году вывезенной Армией США вместе с другими экспонатами Музея Carl Zeiss[12][13].
Первые дисторсирующие объективы рассчитывались на регистрацию всего круга изображения, который вписывали в квадратный или прямоугольный кадр. В 1963 году компания Asahi optical выпустила первый полнокадровый или «диагональный» Fish-eye Takumar 18 мм f/11, кроющий прямоугольный кадр целиком с полусферическим обзором только по диагонали[14]. Этот тип «рыбьего глаза» оказался более востребованным фотографами, поскольку даёт изображение привычной формы. С середины 1960-х годов дисторсирующая оптика прочно заняла место в каталогах оптических фирм, продаваясь как для специальных целей, так и в качестве дополнения к стандартной линейке ортоскопических объективов. В СССР дисторсирующая оптика стала доступна рядовым фотографам в конце 1970-х годов с появлением «гражданских» моделей «Зодиак-2» и «Зодиак-8»Шаблон:Ref+. Все они были «диагональными», заполняя целиком малоформатный и среднеформатный кадры соответственно[15][16]. Позднее на БелОМО начат выпуск циркулярных объективов «Пеленг»[17].
«Рыбьему глазу» нашлось применение в фотожурналистике, фотоискусстве и кинематографе в качестве яркого выразительного средства. Сверхширокоугольные объективы первой современной широкоформатной киносистемы Todd-AO для естественной передачи перспективы проектировались незначительно дисторсирующимиШаблон:Sfn[18]. Сферорамные кинематографические системы (например, IMAX DOME) изначально основаны на использовании объективов типа «рыбий глаз» для съёмки и проекции изображения на полусферический экранШаблон:Sfn. За счёт формы экрана искажения, присущие такой оптике, компенсируются и зрители наблюдают предметы в нормальной перспективе под большими углами, усиливающими эффект присутствия[19]. Таким же способом осуществляется проекция изображения звёздного неба в современных полнокупольных планетариях[20].
Основные разновидности
Все объективы типа «рыбий глаз» принято разделять на две главные разновидности по степени заполнения кадрового окна камеры: «циркулярные» и «диагональные»Шаблон:Sfn. Оба типа изображения могут быть одновременно реализованы в одном зум-объективе, который при минимальном фокусном расстоянии работает как циркулярный фишай, а при максимальном — как диагональный[21].
- Циркулярный (или «круговой») — в данном случае круг поля изображения, даваемого объективом, не заполняет кадровое окно целиком, а его диаметр близок к размеру короткой стороны кадраШаблон:Sfn. Такой объектив имеет угол поля зрения 180° и более во всех направлениях. Зачастую габариты циркулярных объективов из-за большого диаметра передних линз превышают размеры камеры в несколько раз. Наиболее широкое применение они нашли в специальных областях прикладной фотографии, например в метеорологии и астрономии для съёмки небосвода.
- Диагональный (или «полнокадровый») — полученный кадр целиком занят изображением, вырезаемым из круглого пятна, даваемого объективом[22]. При этом угол поля зрения 180° соответствует диагонали кадра. Не всегда поле зрение «Рыбьего глаза» достигает 180°: у некоторых объективов оно меньше, и часто соответствует ортоскопическим сверхширокоугольникам, сохраняя при этом дисторсию.
-
Циркулярный
-
Диагональный
-
Обрезанный круг
-
Циркулярный
-
Обрезанный круг
Ещё одна разновидность является промежуточной, и круг изображения объектива не заполняет прямоугольный кадр полностью, но и не регистрируется на нём целиком, оставаясь обрезанным с двух сторон. При этом диаметр круга вписан по длинной стороне, а не по короткой, как у циркулярных объективов. Аналогичным образом выглядит изображение полнокадровых циркулярных объективов, установленных на «кропнутой» камере, а также некоторых зум-объективов в промежуточном положении кольца масштабирования.
Отображение пространства
При создании обычных широкоугольных объективов стремятся свести к нулю дисторсию — искривление прямых линий, не проходящих через центр кадра. Поэтому изображение, даваемое ортоскопическим объективом, эквивалентно гномонической проекции сферы на плоскость. В таком случае невозможно получить угловое поле 180°, так как край поля зрения окажется бесконечно удалённым[23]. Для достижения полусферического обзора в объектив при его разработке намеренно вносят отрицательную дисторсию, которая обеспечивает специфическое отображение пространства, в зависимости от интенсивности искажения соответствующее той или иной геометрической проекции[24][25]. В большинстве объективов, доступных фотографам, реализована равновеликая азимутальная проекция Ламберта, достижимая минимальной оптической сложностью. При этом зависимость между фокусным расстоянием <math>f'</math> объектива и его полем зрения <math>2 \cdot \omega</math> сложнее, чем в ортоскопических объективах, и зависит от величины дисторсии, определяющей тип проекции сферы на плоскостьШаблон:Sfn.
Объект | Файл:PeterW zt 1.png Исходный объект в виде туннеля, фотографируемый из его центра влево перпендикулярно левой стене (обозначено стрелкой) | ||||
---|---|---|---|---|---|
Ортоскопический | Рыбий глаз[26][27] | ||||
Гномоническая | Стереографическая[28] | Эквидистантная | Азимутальная | Ортографическая | |
Схема | Файл:Gnomonic draw.png | Файл:Stereographic draw.png | Файл:Laengentreu draw.png | Файл:Lambert draw.png | Файл:Orthographic draw.png |
Вид изображения |
Файл:PeterW zt 2.png | Файл:PeterW zt 4.png | Файл:PeterW zt 5.png | Файл:PeterW zt 6.png | Файл:PeterW zt 7.png |
Функция отображенияШаблон:Ref+[27] | <math>d = f' \operatorname{tg}(\omega)</math> | <math>d = 2 f' \operatorname{tg}(\omega / 2)</math> | <math>d = f' \cdot \omega</math> | <math>d = 2 f' \sin(\omega / 2)</math>Шаблон:Ref+</math>. В общем случае <math>k_1 = k_2 = 2</math>, но для некоторых объективов, например AF Nikkor DX 10,5/2,8 значения коэффициентов <math>k_1</math> и <math>k_2</math> могут отличаться|group="*"}} | <math>d = f' \sin(\omega)</math> |
Особенности | Отображает пространство в соответствии с законами линейной перспективы так же, как и камера-обскура. Прямые линии отображаются прямыми, а форма предметов сохраняет геометрическое подобие. При очень широких углах обзора объекты на краях поля зрения растягиваются в направлении от центра кадра. | Сохраняет углы между кривыми. Предпочтительно для фотографии, поскольку почти не сжимает объекты на краю поля зрения. Поле зрения полнокадровых объективов этого типа больше, чем у всех остальных при равном диагональном обзоре. Samyang является единственным производителем. | Сохраняет угловые размеры. Предпочтительно для угловых измерений, в том числе в астрофотографии. В научном сообществе считается «идеальной проекцией». Эквидистантная проекция доступна в приложениях PanoTools для склейки панорам. | Сохраняет соотношения площадей. Наиболее применимо при необходимости сопоставления поверхностей, например облачности или растительного покрова. Дисторсирующие объективы этого типа легче и компактнее других. Главный недостаток — сильное сжатие объектов на краю поля зрения. | Практически отсутствует виньетирование, а яркость равномерна по всему полю, благодаря чему такие объективы предпочтительны для фотометрических исследований. Очень сильно сжимает объекты на краю поля зрения, самого узкого из всех в диагональной версии. |
Максимальное угловое поле | Меньше 180°. В пределе 130—140° | Не ограничено, может достигать 180° и более | Может превышать 180°. Известны объективы с охватом 250°Шаблон:Ref+ | Не ограничено, может достигать 360° | Не может превышать 180° |
Фокусное расстояниеШаблон:Ref+ |
<math>f' = \frac{d}{\operatorname{tg}\omega}</math> | <math>f' = \frac{d}{2 \operatorname{tg}(\omega / 2)}</math> | <math>f' = \frac{d}{\omega}</math> | <math>f' = \frac{d}{2 \sin(\omega / 2)}</math> | <math>f' = \frac{d}{\sin(\omega)}</math> |
Примеры[24][29][30] | Все ортоскопические объективы |
|
|
|
|
Перспектива, аналогичная создаваемой объективами «Рыбий глаз», может быть воспроизведена методами вычислительной фотографии при объединении в общее изображение нескольких снимков, сделанных ортоскопической оптикой. Технология особенно популярна в цифровой панорамной фотографии. Большинство компьютерных приложений, предназначенных для склейки панорам, позволяют задавать различные проекции конечного изображения, в том числе стереографическую. В то же время, изображение, полученное «Рыбьим глазом», может быть программно трансформировано в обычное ортоскопическое, но с неизбежной и сильной потерей качества по краям поля[31].
Области применения
- Современные планетарии используют объективы «Рыбий глаз» для проекции изображения небесной сферы на купол;
- В авиационных тренажёрах для проекции изображения окружающего пространства на полусферические экраны. Это позволяет усилить «эффект погружения» для лётчиков, авиадиспетчеров и военных специалистов;
- В сферорамных кинематографических системах, например «IMAX DOME» (OMNIMAX) или «Спейсариум», объективы типа «рыбий глаз» используется для съёмки и проекции на полусферический экранШаблон:Sfn;
- В сельском и лесном хозяйстве для измерения индексов растительного покрова и инсоляции;
- В астрономии используется для измерения облачного покрова и светового загрязнения, а также фиксации полярных сияний и следов от метеоров;
- В фотографии и кинематографе для съёмки в очень тесных помещениях и в качестве выразительного средства фоторепортажа;
- Компьютерная графика использует законы отображения, аналогичные перспективе «рыбьего глаза» для симуляции отражений в зеркальных сферических поверхностях;
- Большинство дверных глазков построены по оптической схеме «рыбьего глаза» для удобства наблюдения;
- Первый музыкальный видеоклип, снятый полностью «рыбьим глазом», создан в 1987 году на песню группы Beastie Boys;
-
Судно «Академик Иоффе»
-
Научный центр в Глазго
-
Ночной снимок небесной полусферы
-
Снимок улицы
«циркулярный» объектив -
Интерьер. «Диагональный» объектив
-
Интерьер автомобиля
«диагональный» объектив
Дисторсирующие насадки
Кроме полноценных объективов типа «Рыбий глаз» аналогичный вид изображения может быть достигнут обычной оптикой с афокальной широкоугольной насадкой соответствующего типа. В этом случае насадка, действующая по принципу «перевёрнутого телеобъектива», увеличивает угловое поле, одновременно внося дисторсию. Тем не менее, по уровню сложности и стоимости такие насадки не уступают аналогичным объективам, и по этой причине не получили распространения в фотографии[32].
Дисторсирующие насадки оказались удобны для совместной работы с телевизионными вариообъективами, придавая характерное искажение и увеличивая угол обзора, однако из-за оптических особенностей оптики с переменным фокусным расстоянием вся комбинация работоспособна только в положении «макро» при неработающем зумеШаблон:Sfn. Кроме того, такие насадки рассчитаны на очень близкое расположение к основному объективу, накладывая определённые ограничения на диаметр и конструкцию его оправы. В последнее время получили широкое распространение дисторсирующие насадки для камерафонов, к которым крепятся магнитным кольцом или специальным зажимом[33]. Поле зрения камер с такими насадками не всегда достигает 180°, но характерная дисторсия обеспечивает необходимый изобразительный эффект без обработки снимков соответствующими приложениями[34].
Светофильтры
На объектив типа «рыбий глаз» невозможна традиционная установка светофильтров перед большой и выпуклой передней линзой: в этом случае их оправа неизбежно перекрывает поле зрения. Это требует повышенного внимания и аккуратности при съёмке, особенно с близких расстояний, так как линзу без защитного светофильтра легко повредить. При необходимости светофильтры устанавливаются за задним оптическим элементом, что затрудняет выбор их положения, необходимый для градиентных и поляризационных фильтров. Поскольку дополнительный оптический элемент за задней линзой объектива влияет на его оптические свойства, в конструкции предусматривается плоско-параллельный стеклянный компенсатор, заменяемый в случае необходимости, нужным светофильтром[35]. Некоторые производители снабжают хвостовик объектива специальным карманом для оптически нейтральных желатиновых светофильтров на тонкой гибкой подложке[36]. Старые модели объективов этого типа имеют встроенные револьверные диски со стандартным для чёрно-белой фотографии набором из жёлтого, оранжевого и красного светофильтров[10][37]. Установка бленды на объектив также невозможна из-за неизбежного виньетирования ею поля зрения. Большинство диагональных объективов оснащается несъёмной блендой, интегрированной в оправу. Однако, из-за небольших размеров, такая бленда малоэффективна, и по большей части выполняет функцию защитного ограждения передней линзы[36].
Известные фотографы и их работы
- Умбо стал первым в истории фотохудожником, использовавшим «Рыбий глаз» в качестве изобразительного средства. В октябре 1937 года немецкий журнал Volk und Welt опубликовал фоторепортаж, снятый им двумя годами ранее первым достаточно светосильным Weitwinkelobjektiv[8].
- Лев Бородулин — первый советский фотожурналист, у которого появился объектив «Рыбий глаз»[38]. В 1964 году им создана одна из обложек журнала «Огонек»[39]
См. также
Примечания
Источники
Литература
Шаблон:Виды кино- и фотообъективов
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ 3,0 3,1 Шаблон:Статья
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ 8,0 8,1 Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ 10,0 10,1 Ошибка цитирования Неверный тег
<ref>
; для сносокsph
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокple
не указан текст - ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокdp
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокrusy
не указан текст - ↑ 24,0 24,1 Шаблон:Cite web
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite web
- ↑ 27,0 27,1 Шаблон:Cite journal
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокsf
не указан текст - ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ 36,0 36,1 Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web