Русская Википедия:Солнечная архитектура

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Файл:Heliotrop Freiburg.jpg
Дом-гелиотроп во Фрайбурге

Солнечная архитектура — это архитектурный подход к возведению разнообразных зданий, использующих чистую и возобновляемую солнечную энергию. Непосредственное отношение к этому подходу имеют: оптика, термодинамика, электроника, фотовольтаика, материаловедение, энергосбережение.

Для такой архитектуры характерна специфика как пассивного солнечного строительного дизайна, так и активного.

Пассивный солнечный строительный дизайн

Ключевой особенностью является ориентация зданий на солнце, учёт окружающего пространства, выбор материалов с благоприятной тепловой массой и свойствами рассеивания света. Идея Шаблон:Нп3 появилась в Древней Греции около пятого века до нашей эры. До того основным источником топлива в Греции был древесный уголь, но из-за острой нехватки древесины необходимо было найти новый способ отопления жилищ[1].

Греки начали использовать строительные материалы, поглощающие солнечную энергию, в основном камень, а также ориентировать здания на юг и предусматривать навесы и портики[2].

Сократ говорил: Шаблон:Начало цитаты «В домах, которые смотрят на юг, солнце проникает в портик зимой, а летом оно светит прямо над головой, создавая тень под крышей.»Шаблон:Конец цитаты

Римляне улучшали греческий дизайн, закрывая окна с южной стороны различными видами прозрачных материалов[1][3].

Другой пример ранней солнечной архитектуры — это пещерные жилища в юго-западных регионах Северной Америки[4] [5]

Файл:Perissa eglise.jpg
Файл:Toit vegetal norvege.png
Белые стены домов и церкви в Санторини Чёрная стена дома в Норвегии

Цвет стен также играет немаловажную роль. На греческих островах стены зданий традиционно окрашены в белый цвет, чтобы в жару лучше отражать солнечное излучение и сохранять прохладу внутри помещений. Белые стены, покрытые известью, и голубые крыши — типичный стиль, ценимый приезжающими на юг туристами.

На севере в скандинавских странах наоборот: дома окрашены в чёрный цвет, чтобы стены лучше поглощали солнечное тепло. Подходящим материалом служит базальт, так как он чёрный и обладает высокой теплоёмкостью.

Активный солнечный строительный дизайн

Современное воплощение солнечной архитектуры ознаменовалось использованием фотовольтаики для практических целей преобразования солнечного света в электрическую энергию.

В 1954 году специалисты Bell Labs объявили о создании первых солнечных батарей. В 1973 году Делавэрский университет построил один из первых в мире домов с солнечной батареей.

В 1984 году по проекту Шаблон:Нп3 в афинском пригороде Пефки с соблюдением принципов солнечной архитектуры построена «Илиако-Хорио» (Шаблон:Lang-el2, «Солнечная деревня»).

К элементам активного солнечного строительного дизайна относятся: теплицы, модули, накопители тепловой и электрической энергии, дымоходы, солнечный трекер, солнечная маска и солнечная парабола.

Файл:Serre maison canada.png
Файл:Solar kitchen auroville.png
Теплица в Канаде Солнечная парабола в Ауровиле

Теплица сохраняет тепло от Солнца. В двойной остеклённой теплице возникают три эффекта: отсутствие конвекции (из-за блокировки воздуха); удерживание луча (земля поглощает фотоны, излучает их с более низкой инфракрасной энергией, стекло отражает это инфракрасное излучение на землю): низкая теплопроводность (при двойном остеклении).

Солнечная парабола (или параболическое зеркало) концентрирует солнечный свет для получения высоких температур. На основе зеркала-параболоида солнечные печи применялись для приготовления пищи с начала XX века.

Солнечная парабола может использоваться и для промышленного строительства. Одейлийская солнечная печь, включающая в себя 63 гелиостата, обеспечивает нагрев до такой температуры, что плавится даже алмаз.

Файл:Photothermic roof.png
Файл:Triple junction amorphous photovoltaic tiles.png
Фототермические модули Фотоэлектрические плитки

Фототермические модули преобразуют солнечный свет в тепло, нагревая воду в доме[6]. Эти модули стали популярными среди стран Средиземноморья. В Греции и Испании 30-40% домов оснащают этой системой.

В частных домах популярен летний душ, бак которого нагревается от солнечных лучей.

Фотоэлектрические модули преобразуют солнечную энергию в электричество. Классические кремниевые солнечные модули имеют КПД до 25%, но они жёсткие. Тонкие плёночные солнечные модули гибкие, но имеют меньшую эффективность и недолгий срок службы. [6]

Накопление электрической энергии обеспечивает гидроаккумулирующая электростанция, но некоторые способы обустройства своего дома возможны по принципу «сделай сам».

Шаблон:Нп3 отслеживает движение Солнца в небе. Поворачиваясь вслед за ним, трекер улавливает свет, который с помощью модулей превращается в электричество и нагревает дом через прозрачное стекло[7].

Солнечная маска предусматривает сезонные изменения климата, чтобы летом было больше тени, а зимой света. Дом строится таким образом, что крыша защищает от солнца летом во избежание перегрева, но зимой крыша пропускает солнечный свет[8].

Солнечная дымовая труба может быть соединена с бадгиром или деревянной дымовой трубой для более сильного эффекта.

Известные архитектурные сооружения

Солнечная архитектура становится постепенно относительно независимым стилем, который формально следует традициям конструктивизма и функционализма, но всё больше вдохновляется органической архитектурой[9] .

Один из первых крупных небоскрёбов Конде-Наст-билдинг со встроенными солнечными панелями и энергоэффективной технологией был построен в 1995 году в Нью-Йорке[4].

В 2009 году завершилось на Тайване строительство многофункционального стадиона в Гаосюне по проекту известного японского архитектора Тоёо Ито, который активно использовал принципы солнечной архитектуры[10].

Файл:Condé Nast Building.JPG
Файл:World Game 2009 Stadium completed.jpg
Конде-Наст в Нью-Йорке Национальный стадион в Гаосюне

К Олимпийским играм 2016 года в Рио-де-Жанейро планировалось воздвигнуть солнечную городскую башню (Шаблон:Lang-en)[11][12].

Экологические преимущества

Солнечная архитектура требует высоких инвестиций, но цена окупается, поскольку у жителей появляется работающий источник возобновляемой и экологически чистой энергии. При кажущейся выгоде других способов её добычи населению всё чаще приходится слишком дорого платить. Авария на АЭС Фукусима-1 стала экологической катастрофой XXI века[13].

Глобальное потепление уже стало причиной исчезновения некоторых видов насекомых и млекопитающих[14].

Критика

В статьях по поводу солнечной архитектуры критически оценивается её высокая первоначальная стоимость. В то же время критики признают, что после погашения кредитов появляются заметные преимущества[15][16][17][18].

См. также

Литература

  • Sandra Leitte, Cosima Strobl, Angelika Hess; Bergische Universität Wuppertal (Hrsg.): SolarArchitektur4 : die deutschen Beiträge zum Solar Decathlon Europe 2010: Wegweisende Solararchitektur im Detail, Detail, Greenbooks, Institut für internationale Architektur, München 2011, ISBN 978-3-920034-48-5 Шаблон:Ref-de.
  • Jürgen Claus: Kulturelement Sonne. Das solare Zeitalter. Edition Interfrom, Zürich 1997, ISBN 3-7201-5274-X Шаблон:Ref-de.

Примечания

Шаблон:Примечания

Ссылки

  1. 1,0 1,1 Perlin, J. Passive Solar History California Solar Center. Retrieved March 30, 2015.
  2. Passive Solar Design – A History GreenBuilding.com Retrieved March 25, 2015.
  3. Seven ancient wonders of Greek design and technology Шаблон:Wayback Ecoist. Retrieved April 19, 2015
  4. 4,0 4,1 The History of Solar Шаблон:Wayback (2012, March 8) U.S. Department of Energy. Retrieved March 26, 2015.
  5. Our Vision (2015, January 1) Oxford PV. Retrieved March 29, 2015.
  6. 6,0 6,1 Шаблон:Cite web
  7. Шаблон:Cite web
  8. Шаблон:Cite web
  9. Stefan Behling, Sophia Behling: Sol Power - Die Evolution der solaren Architektur. Prestel, München 1996, ISBN 3-7913-1651-6 Шаблон:Ref-de
  10. Шаблон:Cite web
  11. Шаблон:Cite web
  12. Шаблон:Cite web
  13. Шаблон:Cite web
  14. Шаблон:Книга
  15. Шаблон:Книга
  16. Kaan, H. (2009, June 12). Architects just want to develop attractive buildings ECN. Retrieved April 19, 2015.
  17. Maehlum, M. (2015, March 23). How Much Do Solar Panels Cost Шаблон:Wayback Energy Informative. Retrieved April 19, 2015.
  18. Шаблон:Книга