Если задан некоторый неприводимый многочлен <math>f(x)</math> над кольцом <math>K</math> и выбран некоторый его корень <math>\alpha</math> в расширении <math>K[\alpha]</math>, то сопряженным корнем для данного корня <math>\alpha</math> многочлена <math>f(x)</math> называется любой корень многочлена <math>f(x)</math> (иногда, в зависимости от контекста, под сопряженным корнем понимается любой другой корень данного многочлена). Число сопряженных корней неприводимого многочлена равно степени <math>\operatorname{deg}f</math> многочлена <math>f</math>.
Также говорят, что элементы <math>\alpha,\beta</math> являются сопряженными, если они являются корнями некоторого неприводимого многочлена <math>f</math>
Свойства
- Теорема Виета задает <math>\operatorname{deg}f</math> алгебраических соотношений между сопряженными корнями многочлена.
- Если <math>K</math> — поле, то Группа Галуа <math>Gal(K(\alpha),K)</math> изоморфна некоторой подгруппе группы перестановок, действующей на множестве сопряженных корней многочлена. Отображение корня в ему сопряженный задает автоморфизм расширения основного поля.
Примеры
- Если <math>f(x)=ax^2+bx+c</math> — многочлен 2-й степени, то сопряженные корни имеют вид <math>r\pm\sqrt{s}</math>.
- Корни из единицы <math>\varepsilon ^j</math> n-й степени являются сопряженными корнями многочлена <math>x^n-1=0</math> над <math>\mathbb{R}(\varepsilon)</math>
См. также
Шаблон:Rq
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|