Русская Википедия:Степень окисления

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:See also Сте́пень окисле́ния (окислительное число[1]) — вспомогательная условная величина для записи процессов окисления, восстановления и окислительно-восстановительных реакций. Она указывает на состояние окисления отдельного атома молекулы и представляет собой лишь удобный метод учёта переноса электронов: она не является истинным зарядом атома в молекуле (см. §Условность).

Представления о степени окисления элементов положены в основу и используются при классификации химических веществ, описании их свойств, составлении формул соединений и их международных названий (номенклатуры). Но особенно широко оно применяется при изучении окислительно-восстановительных реакций.

Понятие степень окисления часто используют в неорганической химии вместо понятия валентность.

Определение

Степень окисления атома равна численной величине электрического заряда, приписываемого атому в предположении, что электронные пары, осуществляющие связь, полностью смещены в сторону более электроотрицательных атомов (то есть исходя из предположения, что соединение состоит только из ионов). В случае ковалентной связи между одинаковыми атомами электроны делят поровну между атомами.

Степень окисления соответствует числу электронов, которое следует присоединить к положительному иону, чтобы восстановить его до нейтрального атома, или отнять от отрицательного иона, чтобы окислить его до нейтрального атома:

<math>\mathsf{Al^{3+} + 3e^- \rightarrow Al}</math>
<math>\mathsf{S^{2-} \rightarrow S + 2e^-}</math>

Описание

В научной литературе для обозначения степени окисления элемента используется метод Штока[2]. Степень окисления указывается после названия либо символа элемента римскими цифрами в круглых скобках, причём пробел перед открывающей скобкой не ставится: железо(III), Ni(II).

Степень окисления также может указываться арабскими цифрами сверху над символом элемента: <math>\mathrm{\stackrel{+1}{Na}\stackrel{-1}{Cl}, \stackrel{+2}{Mg}\stackrel{-1}{Cl}_2, \stackrel{-3}{N}\stackrel{+1}{H}_3, \stackrel{+2}{C}\stackrel{-2}{O}, \stackrel{+4}{C}\stackrel{-2}{O}_2, \stackrel{+1}{Cl}\stackrel{-1}{F}, \stackrel{+1}{H}\stackrel{+5}{N}\stackrel{-2}{O}_3, \stackrel{-4}{C}\stackrel{+1}{H}_4, \stackrel{+1}{K}\stackrel{+7}{Mn}\stackrel{-2}{O}_4.}</math>. В отличие от указания заряда иона, при указании степени окисления первым ставится знак, а потом численное значение, а не наоборот[3] (при этом в формулах почти всегда указывается заряд атома/иона, а в тексте — степень окисления +2, +3…, отсюда и путаница; в формулах степень окисления пишут над элементом (знак впереди — на первом месте), заряд для ионов (не для каждого элемента в сложных ионах!) — пишется верхним индексом — сверху справа после иона (знак позади числа): <math> (\stackrel{-3}{\mbox{N}} \stackrel{+1}{\mbox{H}}_{4})_2 \stackrel{+6}{\mbox{S}} \stackrel{-2}{\mbox{O}}_{4} </math> — степени окисления, <math> {(\mbox{NH}}_4^{1+})_2 {\mbox{SO}}_4^{2-} </math> — заряды.

Степень окисления (в отличие от валентности) может иметь нулевое, отрицательное и положительное значения, которые обычно ставятся над символом элемента сверху: <math>\mathrm{\stackrel{0}{Kr}, \stackrel{+1}{\mbox{Na}}_{2}\stackrel{-2}{\mbox{O}}.}</math>

Правила вычисления степени окисления:

  • Степень окисления атома любого элемента в свободном (несвязанном) состоянии (простое вещество) равна нулю, так, например, атомы в молекулах имеют нулевую степень окисления: <math>\mathrm{\stackrel{0}{O}_3, \stackrel{0}{O}_2, \stackrel{0}{H}_2, \stackrel{0}{N}_2, \stackrel{0}{S}_8, \stackrel{0}{P}_4, \stackrel{0}{Br}_2, \stackrel{0}{Cl}_2, \stackrel{0}{C}, \stackrel{0}{Fe}, \stackrel{0}{Na}.}</math>
  • Степень окисления любого простого одноатомного иона соответствует его заряду, например: NaШаблон:Sup = +1, CaШаблон:Sup = +2, ClШаблон:Sup = −1.
  • Степень окисления водорода в любом неионном соединении равна +1. Это правило применимо к подавляющему большинству соединений водорода, таких, как HШаблон:SubO, NHШаблон:Sub или CHШаблон:Sub. (Определение через электротрицательность даёт исключение для некоторых веществ: <math>\mathrm{\stackrel{+4}{Si}\stackrel{-1}{H}_4, \stackrel{+3}{As}\stackrel{-1}{H}_3}</math>). Для ионных гидридов металлов, например NaH, степень окисления водорода −1.
  • Степень окисления кислорода равна −2 во всех соединениях, где кислород не образует простой ковалентной связи O—O, то есть в подавляющем большинстве соединений — оксидах. Так, степень окисления кислорода равна −2 в HШаблон:SubO, HШаблон:SubSOШаблон:Sub, NO, COШаблон:Sub и CHШаблон:SubOH; но в пероксиде водорода, HШаблон:SubOШаблон:Sub (HO—OH), она равна −1 (другими исключениями из правила, согласно которому кислород имеет степень окисления −2, являются <math>\mathrm{\stackrel{+2}{O}\stackrel{-1}{F}_2, \stackrel{+1}{O}_2\stackrel{-1}{F}_2}</math>, а также свободные радикалы, например <math>\mathrm{\bullet\stackrel{-1}{O}\stackrel{+1}{H}}</math>).
  • В соединениях неметаллов, не включающих водород и кислород, неметалл с большей электроотрицательностью считается отрицательно заряжённым. Степень окисления такого неметалла полагается равной заряду его наиболее распространённого отрицательного иона. Например, в CClШаблон:Sub степень окисления хлора −1, а углерода +4. В CHШаблон:Sub степень окисления водорода +1, а углерода −4. В SFШаблон:Sub степень окисления фтора −1, а серы +6, но в CSШаблон:Sub степень окисления серы −2, а степень окисления углерода +4.
  • Алгебраическая сумма степеней окисления всех атомов в формуле нейтрального соединения всегда равна нулю:

<math> \stackrel{+1}{\mbox{H}}_{2} \stackrel{+6}{\mbox{S}} \stackrel{-2}{\mbox{O}}_{4}, </math> <math> (+1 \cdot 2)+(+6 \cdot 1) + (-2 \cdot 4) = +2 +6 -8 = 0 </math>

  • Алгебраическая сумма степеней окисления всех атомов в комплексном ионе (катионе либо анионе) должна быть равна его общему заряду (см. также выше 2-й пункт). Так, в ионе NHШаблон:SubШаблон:Sup степень окисления N должна быть равной −3 и, следовательно, −3 + 4 = +1. Поскольку в ионе SOШаблон:SubШаблон:Sup сумма степеней окисления четырёх атомов кислорода равна −8, сера должна иметь степень окисления, равную +6, чтобы полный заряд иона оказался равным −2.
  • В химических реакциях должно выполняться правило сохранения алгебраической суммы степеней окисления всех атомов. Именно это правило делает понятие степени окисления столь важным в современной химии. Если в ходе химической реакции степень окисления атома повышается, говорят, что он окисляется, если же степень окисления атома понижается, говорят, что он восстанавливается. В полном уравнении химической реакции окислительные и восстановительные процессы должны точно компенсировать друг друга.
  • Максимальная положительная степень окисления элемента обычно численно совпадает с номером его группы в периодической системе (классического короткого варианта таблицы). Максимальная отрицательная степень окисления элемента равна максимальной положительной степени окисления минус восемь (например, для халькогена S положительная степень окисления +6, макс. отрицательная 6 − 8 = −2).
    Исключение составляют фтор, кислород, благородные газы (кроме ксенона), а также железо, кобальт, родий и элементы подгруппы никеля: их высшая степень окисления выражается числом, значение которого ниже, чем номер группы, к которой они относятся. Иридий имеет высшую степень окисления +9[4]. У элементов подгруппы меди, наоборот, высшая степень окисления больше единицы, хотя они и относятся к I группе. У лантаноидов степени окисления не превышают +4 (в особых условиях зафиксирована степень окисления +5 для празеодима[5]); у актиноидов зафиксированы степени окисления вплоть до +7.
    Правило о равенстве числу восемь суммы абсолютных величин степеней окисления элемента (R) по кислороду (RO) и по водороду (HR; то есть положительных и отрицательных степеней окисления) соблюдается лишь для p-элементов IV—V—VI—VII групп таблицы Шаблон:Abbr.
  • Элементы-металлы в соединениях обычно имеют положительную степень окисления. Однако встречаются соединения, где степень окисления металлов нулевая (нейтральные карбонилы и некоторые другие комплексы) и отрицательная (алкалиды, ауриды, анионные карбонилы, фазы Цинтля)[6][7].

Понятие степени окисления вполне применимо и для нестехиометрических соединений (КС8, Mo5Si3, Nb3B4 и др.).

Условность

Следует помнить, что степень окисления является сугубо условной величиной, не имеющей физического смысла, но характеризующей образование химической связи межатомного взаимодействия в молекуле.

Степень окисления в ряде случаев не совпадает с валентностью. Например, в органических соединениях углерод всегда четырёхвалентен, а степень окисления атома углерода в соединениях метана CH4, метилового спирта CH3OH, формальдегида HCOH, муравьиной кислоты HCOOH и диоксида углерода CO2, соответственно, равна −4, −2, 0, +2 и +4.

Степень окисления зачастую не совпадает с фактическим числом электронов, которые участвуют в образовании связей. Обычно это молекулы с различными электрондефицитными химическими связями и делокализацией электронной плотности. Например, в молекуле азотной кислоты степень окисления центрального атома азота равна +5, тогда как ковалентность равна 4, а координационное число — 3. В молекуле озона, имеющей сходное с SO2 строение, атомы кислорода характеризуется нулевой степенью окисления (хотя часто говорят, что центральный атом кислорода имеет степень окисления +4).

Степень окисления в большинстве случаев не отражает также действительный характер и степень электрической поляризации атомов (истинного заряда атомов, определённых экспериментальным путём). Так, и в HCl, и в NaCl степень окисления хлора принимается равной −1, тогда как на самом деле поляризация его атома (относительный эффективный заряд δШаблон:Sup) в этих соединениях различна: δШаблон:Sub(HCl) = −0,17 единицы заряда, δШаблон:Sub(NaCl) = −0,9 единицы заряда (абсолютного заряда электрона); водорода и натрия — соответственно +0,17 и +0,90[8].
А в кристаллах сульфида цинка ZnS заряды атомов цинка и серы равны соответственно +0,86 и −0,86, вместо степеней окисления +2 и −2[9].

На примере хлорида аммония удобно затронуть существующее в современной химии перекрещивание различных понятий. Так, в NHШаблон:SubCl атом азота имеет степень окисления −3, ковалентность IV, электровалентность (формальный заряд по Льюису) +1 {аммоний-катион имеет заряд также 1+}, и общую валентность (структурную; общее координационное число) 5, а для его эффективного заряда предлагалось значение −0,45[10].

Проблемы

Применение понятия степени окисления проблематично для следующих классов соединений[11]:

  • Соединения, содержащие ковалентные связи между атомами близкой электроотрицательности, например: PH3, Cl3N. В этом случае использование различных шкал электроотрицательности даёт различные результаты. В 2014 году ИЮПАК дал рекомендацию пользоваться шкалой электроотрицательности Аллена, поскольку другие шкалы используют понятия валентного состояния атома (что усложняет определение условной величины) или его степени окисления (что создаёт порочный круг)[12].
  • Соединения, содержащие делокализованные ковалентные связи и являющиеся промежуточными между резонансными структурами, где степени окисления атомов различны. Например, в молекуле N2O крайний атом азота имеет степень окисления от −1 до 0, средний — от +2 до +3. В случае, когда атомы одного элемента в структуре равноправны, им приписывают среднее из возможных значений степени окисления, которое может быть дробным. Например: <math>\mathrm{\stackrel{-1/2}{{{O}_2}^-}, \stackrel{-6/5}{C}_5 \stackrel{+1}{{{H}_5}^-}}</math>. В уравнениях окислительно-восстановительных реакций часто используют средние (в том числе дробные) значения степени окисления даже в том случае, когда атомы неравноправны, например <math>\mathrm{\stackrel{+8/3}{\mbox{Fe}}_{3}\stackrel{-2}{\mbox{O}}_4}</math> (по строгому определению <math>\mathrm{\stackrel{+2}{\mbox{Fe}}\stackrel{+3}{\mbox{Fe}}_2\stackrel{-2}{\mbox{O}}_4}</math>).
  • Соединения, содержащие полностью делокализованные электроны (металлическая связь). Например, дикарбид лантана LaC2 состоит из ионов La3+, C22− и делокализованных электронов. Наличие в соединении ионов C22− позволяет считать степень окисления лантана равной +2; с другой стороны, бо́льшая длина связи C≡C по сравнению с CaC2, объясняемая взаимодействием делокализованных электронов с антисвязывающими орбиталями, позволяет считать степень окисленния углерода равной −3/2. Третья возможность — рассматривать такие соединения как электриды, то есть не приписывать делокализованные электроны ни одному из атомов. В случае, когда все элементы в соединении — металлы (см. Интерметаллиды), их степени окисления обычно считают равными нулю.

Пример составления уравнения окислительно-восстановительной реакции

<math> \mathsf{\stackrel{+8/3}{Fe}_{3}\stackrel{ }{O}_{4} + \stackrel{0}{H}_{2} \rightarrow \stackrel{0}{Fe} + \stackrel{+1}{H}_{2}\stackrel{ }{O}} </math>

Составляем электронные уравнения:

<math>

\begin{array}{rl|l} \mathsf{H_2-2e^{-}}&= \mathsf{2H^{+}} &\mathsf{4}\\ \mathsf{\underline{3Fe^{(+8/3)}} + 8e^{-}}&= \mathsf{3Fe} &\mathsf{1} \end{array} </math>

Найденные коэффициенты проставляем в схему процесса, заменяя стрелку на знак равенства:

<math>

\mathsf{Fe_3O_4 + 4H_2 = 3Fe + 4H_2O} </math> (то есть в электронных реакциях (методе электронного баланса) железо с дробной степенью окисления записывается только с коэффициентом 3).
На самом деле, в растворе нет ионов FeШаблон:Sup, FeШаблон:Sup (и уж тем более FeШаблон:Sup), также как и CrШаблон:Sup, MnШаблон:Sup, SШаблон:Sup, а есть ионы CrOШаблон:SubШаблон:Sup, MnOШаблон:SubШаблон:Sup, SOШаблон:SubШаблон:Sup, а равно и малодиссоциированные «электролиты» FeШаблон:SubOШаблон:Sub (FeO•FeШаблон:SubOШаблон:Sub). Именно поэтому следует отдать предпочтение методу полуреакций (ионно-электронным методам) и применять его при составлении уравнении всех окислительно-восстановительных реакций, протекающих в водных растворах. То есть мы можем воспользоваться готовой реакцией стандартного электродного потенциала:
FeШаблон:SubOШаблон:Sub + 8HШаблон:Sup + 8eШаблон:Sup = 3Fe + 4HШаблон:SubO, = −0,085 В.

См. также

Примечания

Шаблон:Примечания

  1. Шаблон:БСЭ3
  2. Справочник химика. Под ред. Б. П. Никольского, Л: Химия, 1971. С. 13.
  3. Эту фиктивную зарядность в молекулах с ковалентными связями правильнее называть степенью окисления элемента, иначе, его окислительным числом. Для отличия от положительной или отрицательной зарядности (например, <math> {\mbox{Ca}}^{2+} {\mbox{O}}^{2-} </math>, <math> {\mbox{Na}}^{1+} {\mbox{Cl}}^{1-} </math>) знаки при степени окисления (окислительном числе) меняют на обратные (например, <math> \stackrel{+1}{\mbox{H}} \stackrel{-1}{\mbox{F}} </math>). Адекватны этой формуле и изображения: H→F и HШаблон:Sup—FШаблон:Sup. Агафошин Н.П. Периодический закон и периодическая система хим. элементов Д. И. Менделеева. — 2-е изд. — М.: Просвещение, 1982. — с. 56
  4. Шаблон:Статья
  5. Шаблон:Статья
  6. Шаблон:Статья
  7. Шаблон:Cite web
  8. Степень окисления не следует путать с истинным эффективным зарядом атома, который практически всегда выражается дробным числом.
    Рассмотрим для наглядности ряд соединений хлора:
    <math>\mathrm{{H}\stackrel{ }{Cl}, \stackrel{ }{Cl}_2, \stackrel{ }{Cl}_2{O}, \stackrel{ }{Cl}_2{O}_7}</math>
    В HCl хлор отрицательно одновалентен. В молекуле ClШаблон:Sub, к примеру, ни один из атомов не оттягивает электронов больше другого, следовательно, заряд [а равно и степень окисления] равен нулю. В ClШаблон:SubO хлор снова одновалентен, но уже положительно. В ClШаблон:SubOШаблон:Sub хлор положительно семивалентен:
    <math>\mathrm{{H}\stackrel{-1}{Cl}, \stackrel{0}{Cl}_2, \stackrel{+1}{Cl}_2{O}, \stackrel{+7}{Cl}_2{O}_7}</math>
    Определяемые подобным образом электрохимические валентности (степени окисления) отдельных атомов могут не совпадать с их обычными (структурными) валентностями. Например, в молекуле ClШаблон:Sub (Cl-Cl) каждый атом хлора электрохимически нуль-валентен (точнее, степень окисления = 0), но структурно он одновалентен (валентность = I).
    Некрасов Б.В. Основы общей химии. — 3-е изд., испр. и доп. — М.: Химия, 1973. — Т. I. — стр. 285—295
    см. также Эффективный заряд.
  9. Угай Я. А. Валентность, химическая связь и степень окисления — важнейшие понятия химии Шаблон:Wayback // Соросовский образовательный журнал. — 1997. — № 3. — С. 53-57
  10. Некрасов Б.В. Основы общей химии. — 3-е изд., испр. и доп. — М.: Химия, 1973. — Т. I. — стр. 395
  11. Шаблон:Статья
  12. Шаблон:Статья