Русская Википедия:Стрелка Пирса
Шаблон:Булева функция Стре́лка Пи́рса (функция Вебба, отрицание дизъюнкции)[1] — бинарная логическая операция, булева функция над двумя переменными. Введена в рассмотрение Чарльзом Пирсом в 1880—1881 годах.
Стрелка Пирса, обычно обозначаемая ↓, эквивалентна операции ИЛИ-НЕ[2] и задаётся следующей таблицей истинности:
<math>a</math> | <math>b</math> | <math>a \downarrow b</math> |
---|---|---|
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 0 |
Таким образом, высказывание «X ↓ Y» означает «(не X) и (не Y)», или, что то же самое, «не (X или Y)». Операция NOR коммутативна: от перемены мест операндов результат операции не изменяется.
Стрелка Пирса, как и штрих Шеффера, образует функционально-полный логический базис для пространства булевых функций от двух переменных. Это означает, что, используя только стрелку Пирса, можно построить все остальные логические операции, например:
- <math> X \darr X \equiv \neg X </math> — отрицание;
- <math> \left( {X \darr X} \right) \darr \left( {Y \darr Y } \right) \equiv {X \wedge Y } </math> — конъюнкция;
- <math>\left( {X \darr Y} \right) \darr \left( {X \darr Y} \right) \equiv X \vee Y </math> — дизъюнкция;
- <math> \left( \left( {X \darr X } \right) \darr Y \right) \darr \left( \left( {X \darr X } \right) \darr Y \right) \equiv X \rarr Y </math> — импликация.
В электронике это означает, что для реализации всего многообразия схем преобразования сигналов, представляющих логические значения, достаточно одного типового элемента, который носит название «операция 2ИЛИ-НЕ» (2-in NOR). С другой стороны, такой подход увеличивает сложность реализующих выражения схем и тем самым снижает их надёжность, а также увеличивает время прохождения сигнала и снижает быстродействие устройства.
Функциональная операция, выполняемая при <math>n</math> входах, определяется следующим выражением:
<math>F=\overline{x_1+x_2+x_3+x_4+...x_n}.</math>
Схемы
Говоря простым языком, вентиль 2ИЛИ-НЕ — это 2ИЛИ с подключённым к нему инвертором. Для наглядности — ниже приведён пример логической схемы 2ИЛИ-НЕ с выключателями. Как известно, логика 2ИЛИ близка к выражению «или A, или B, или то и другое». Чтобы получить операцию 2ИЛИ-НЕ, результат 2ИЛИ необходимо инвертировать, чтобы получить «не (A или B)». На схеме ниже это выглядит следующим образом: серым отмечены выключатели в состоянии «выключено», синим — в состоянии «включено». На верхней левой схеме оба выключателя находятся в положении «выключено». Таким образом, следуя выражению на выходе, получаем логический 0. Инвертированный результат будет равен 1 и тем самым будет логически удовлетворять выражению «не А, не B». Следующие схемы демонстрируют соответственно «ИЛИ А», «ИЛИ B», «И А, И B» с последующей инверсией результата.
Слева представлены варианты реализации вентиля 2ИЛИ-НЕ с помощью диодно-транзисторной логики и с помощью МОП соответственно.
Представленная схема на МОП выполнена на однотипных МОП-транзисторах, однако существуют вариант схемы 2ИЛИ-НЕ на комплементарных (дополняющих) МОП-транзисторах. Такую схему получают путём последовательного соединения однотипных транзисторов и параллельного соединения группы транзисторов другого типа.
См. также
- Идентичность
- Отрицание
- Конъюнкция
- Дизъюнкция
- Эквиваленция
- Исключающее или
- Импликация
- Обратная импликация
- Штрих Шеффера
- Условная дизъюнкция
- Таблица истинности
- Закон тождества
Литература
- Шаблон:Книга
- Белоусов, Аркадий Алгебра логики и цифровые компьютеры
- Терещук Д. С. Логическое моделирование СБИС на переключательном уровне
- Ю. С. Забродин «Промышленная электроника» — С. 221.
Примечания
- ↑ Коваль В. Н. СТРЕЛКА ПИРСА // Энциклопедия кибернетики. Том 2. Киев, 1974. С. 162 Шаблон:Wayback
- ↑ В Юникоде для операции ИЛИ-НЕ предусмотрен символ ⊽ U+22BD (NOR)