Русская Википедия:Теорема Брука — Райзера — Човла

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Теорема Шаблон:Не переведено 5Шаблон:Не переведено 5Шаблон:Не переведено 5 — это результат в комбинаторике блок-схем. Теорема утверждает, что если (v, b, r, k, λ)-схема существует с v = b (симметичная блок-схема), то:

  • если v чётно, то k − λ является квадратом;
  • если v нечётно,то следующее диофантово уравнение имеет нетривиальное решение:
    <math>x^2 - (k - \lambda)y^2 - (-1)^{(v-1)/2}\lambda z^2 = 0</math>.

Теорему доказали для случая проективных плоскостей Брук и РайзерШаблон:Sfn. Теорему расширили на симметричные схемы Райзер и ЧовлаШаблон:Sfn.

Проективные плоскости

В специальном случае симметричных схем с <math>\lambda = 1</math>, то есть проективных плоскостей, теорему (которая в этом случае известна как теорема Брука —Райзера) можно сформулировать следующим образом: Если конечная проективная плоскость порядка q существует и q сравнимо с 1 или 2 (mod 4), то q должно быть суммой двух квадратов. Заметим, что для проективной плоскости для параметров схемы выполняется <math>v = b = q^2 + q + 1, r = k = q + 1, \lambda = 1</math>. Таким образом, в этом случае v всегда нечётно.

Теорема, например, исключает существование проективных плоскостей порядков 6 и 14, но позволяет существование плоскостей порядков 10 и 12. Поскольку было показано с помощью комбинации теории кодирования с крупномасштабным компьютерным поиском, что проективная плоскость порядка 10 не существуетШаблон:Sfn, условие теоремы очевидно не достаточно для существования схемы. Однако не известно критерия несуществования.

Связь с матрицами инцидентности

Существование симметрической (v, b, r, k, λ)-схемы эквивалентно существованию v × v матрицы инцидентности R с элементами 0 и 1, удовлетворяющей условию

<math>R R^T = (k - \lambda)E + \lambda J</math>,

где E является v × v единичной матицей, а Jv × v матрицей, в которой все элементы равны 1. По существу, теорема Брука — Райзера — Човла является утверждением о необходимых условиях существования рациональной v × v матрицы R, удовлетворяющей этому уравнению. Фактически, условия, заключённые в теореме Брука — Райзера — Човла, являются не просто необходимыми, но также и достаточны для существования таких рациональных матриц R. Они могут быть выведены из теоремы Минковского — Хассе о рациональной эквивалентности квадратичных форм.

Примечания

Шаблон:Примечания

Литература

Шаблон:Refbegin

Шаблон:Refend

Ссылки

Шаблон:Rq