Теорема Моро — это результат в выпуклом анализе. Она показывает, что достаточно хорошие выпуклые функционалы на гильбертовых пространствах дифференцируемы и производная хорошо аппроксимируется так называемой аппроксимацией Иосиды, которая определяется в терминах резольвенты.
Утверждение теоремы
Пусть <math>\varphi: H \to \R \cup \{+\infty\}</math> будет собственным выпуклым полунепрерывным снизу функционалом в гильбертовом пространстве H со значениями в расширенной числовой прямой. Пусть A означает <math> \partial \varphi</math>, субдифференциал <math>\varphi </math>. Для <math>\alpha > 0</math> пусть <math>J_\alpha</math> означает резольвенту:
- <math>J_{\alpha} = (\mathrm{id} + \alpha A)^{-1};</math>
а <math>A_\alpha</math> означает аппроксимацию Иосиды для A:
- <math>A_{\alpha} = \frac1{\alpha} ( \mathrm{id} - J_{\alpha} ).</math>
Для каждого <math>\alpha > 0</math> и <math>x \in H</math> положим
- <math>\varphi_{\alpha} (x) = \inf_{y \in H} \frac1{2 \alpha} \| y - x \|^{2} + \varphi (y).</math>
Тогда
- <math>\varphi_{\alpha} (x) = \frac{\alpha}{2} \| A_{\alpha} x \|^{2} + \varphi (J_{\alpha} (x))</math>,
<math>\varphi_\alpha</math> выпукла и дифференцируема по Фреше с производной <math>d\varphi+\alpha = A_\alpha</math>. Кроме того, для любого <math>x \in H</math>(поточечно), <math>\varphi_\alpha(x)</math> сходится к <math>\varphi(x)</math> при <math>\alpha \to 0</math>.
Литература
Шаблон:Rq
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|