В математическом анализе и дифференциальном исчислении теорема Реллиха — теорема о целых решениях дифференциального уравнения, доказанная в 1940 году Францем Реллихом.
Формулировка
Шаблон:Рамка
Пусть в дифференциальном уравнении
- <math>\dot{x}=f(x,t)</math>
правая часть является всюду сходящимся степенным рядом по <math>x,t</math> (целой функцией). Если имеется два решения <math>x=u(t)</math> и <math>x=v(t)</math>, которые являются целыми функциями <math>t</math>, то любое другое целое решение <math>x=w(t)</math> имеет вид
- <math> w(t)=u(t)+(v(t)-u(t))c</math>
при надлежащим образом выбранной константе <math>c</math>. Если <math>f(x,t)</math> не
является линейной функцией <math>x</math>, то имеется не более чем счётное число констант <math>c_n</math>, при которых выражение
- <math> u(t)+(v(t)-u(t))c_n</math>
является решением и множество <math>c_n</math> не может иметь конечной предельной точки.
Шаблон:Конец рамки
Последнее утверждение допускает обращение: всегда существует нелинейное дифференциальное уравнение с целой правой частью, имеющее бесконечную серию целых решений <math>u(t)+(v(t)-u(t))c_n</math> при любых заданных <math>u(t), v(t)</math>, не равных друг другу ни при каком значении <math>t</math>, и любом наборе чисел <math>c_n</math> (имеющих предельную точку разве лишь на бесконечности).
Следствия
Следствием теоремы Реллиха является то, что общее решение <math>x=x(t,C)</math> нелинейного уравнения <math>\dot x= f(x,t)</math> с целой правой частью не может быть целой функцией от t, в то время как всякое линейное дифференциальное уравнение с целыми коэффициентами всегда имеет целое общее решение.
Ссылки
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|