Русская Википедия:Теорема Римана об отображении

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Значения Теорема Римана об отображениикомплексном анализе именуемая просто теоремой Римана) — классический результат 2-мерной конформной геометрии и одномерного комплексного анализа.

Пусть <math>U</math> — область на расширенной комплексной плоскости, являющаяся односвязной, причём её граница содержит более одной точки. Тогда существует голоморфная функция <math>f</math> на единичном круге <math>\Delta=\{z\in \mathbf{C}:|z|<1\}</math>, отображающая его на <math>U</math> взаимно однозначно.

Замечания

Голоморфная функция, являющаяся взаимно-однозначной (то есть обратимой), является конформным отображением, так что теорему можно формулировать в терминах конформной эквивалентности. Также, не имеет значения, утверждать существование функции <math>f\colon \Delta \to U</math> или обратной, <math>f^{-1}\colon U \to \Delta</math>. Можно даже требовать существования отображения из любой односвязной области в любую другую односвязную — утверждение теоремы от этого не станет сильнее.

Данная теорема кажется парадоксальной, так как условия на область являются чисто топологическими и никак не оговаривают геометрию её границы. В самом деле, сравнительно легко строятся конформные отображения круга не только на многоугольники и прочие фигуры обладающие углами, но и области наподобие круга с одним вырезанным радиусом и т. д. При некоторой сноровке даже строится функция на круге, образ которой имеет границу нигде не гладкую. Впрочем, Риман сумел доказать теорему лишь в предположении кусочной гладкости границы.

Единственность отображения

Поскольку единичный круг легко нетождественно конформно отобразить на себя, то искомое конформное отображение единственным быть не может. Однако легко видеть, что весь произвол в построении отображения и относится на счёт автоморфизмов единичного круга, которые образуют вещественную 3-мерную группу Ли.

Вариации и обобщения

  • Попытки обобщить данную теорему на вещественную конформную геометрию в размерностях выше 2, как и на комплексную геометрию в размерностях выше 1, используя понятие голоморфного отображения, к особым успехам не привели. Доказано, что и в том и другом случае для эквивалентности областей уже недостаточно чисто топологических условий. Теорема геометризации может рассматриваться как вариант обобщения теоремы на трёхмерный случай.

Литература


Шаблон:Math-stub