Русская Википедия:Теорема об униформизации

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Теорема об униформизации — обобщение теоремы Римана об отображении на двумерные римановы многообразия. Можно сказать, что теорема даёт наилучшую метрику в данном конформном классе.

Формулировка

Любая односвязная риманова поверхность конформно эквивалентна сфере Римана <math>\widehat{\mathbb C}</math> комплексной плоскости <math>\mathbb C</math>, либо открытому единичному диску <math>\mathbb D=\{\,z\in \Complex : |z|<1\,\}</math>.

Следствия

  • Любая риманова метрика на связном двумерном многообразии конформно эквивалентна полной метрике с постоянной кривизны.
    • Если многообразие замкнуто, то знак кривизны можно найти по его эйлеровой характеристике.
      • Если эйлерова характеристика положительна, то многообразие конформно эквивалентно сфере или проективной плоскости с канонической метрикой.
      • Если эйлерова характеристика равна нулю, то многообразие конформно эквивалентно плоскому тору или плоской бутылке Кляйна. При этом у тора и бутылки Кляйна существует 2-параметрическое семейство плоских метрик, не конформно эквивалентных друг другу.
      • Если эйлерова характеристика отрицательна, то многообразие конформно эквивалентно гиперболической поверхности.

Вариации и обобщения

  • Теорема геометризации может рассматриваться как обобщения теоремы об униформизации на трёхмерные многообразия.

Литература

Шаблон:Math-stub