Русская Википедия:Термическое упрочнение проката

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Нет ссылок Термическое упрочнение проката — повышение качества проката (фасонных профилей, арматуры, листового) за счёт термической обработки в потоке прокатного производства.

Высокотемпературная термомеханическая обработка (ВТМО)

Совмещение процессов горячей деформации и ускоренного контролируемого охлаждения в процессе прокатки позволяют существенно улучшить качество металлопродукции. Теоретические основы такого процесса разработаны научной школой МИСиС под руководством М. Л. Бернштейна. Существенный вклад в исследование процессов ВТМО внесли работы В. А. Займовского, Л. М. Капуткиной, С. Д. Прокошкина и др. Исследованию термомеханического упрочнения стали посвящены работы российских учёных — В. Д. Садовского, П. Д. Одесского, Л. И. Гладштейна, С. А. Мадатяна и др. Существенный вклад в практическое внедрение процессов термического упрочнения в потоке прокатного производства внесли учёные Института Чёрной металлургии (Днепропетровск): В. Т. Черненко, А. С. Кудлай, В. И. Спиваков и ЦНИИСК им. В.А. Кучеренко (Москва): В. А. Барышев, А. С. Ключ, Н. В. Толмачёва, С. В. Бернштейн и др. В процессе термомеханического упрочнения важным является правильное распределение степеней обжатия на каждой клети прокатного стана, скорость горячей деформации, длительность последеформационной выдержки, способ и скорость последеформационного охлаждения. За счёт термомеханического упрочнения создаётся структура динамической полигонизации аустенита, наследуемая при последующем ускоренном охлаждении низкотемпературными фазами — мартенситом, бейнитом или ферритом. Дополнительное повышение комплекса свойств (прочность, пластичность и сопротивление разрушению) происходит также за счёт более равномерного распределения упрочняющих фаз (карбидов, карбонитридов и т. п.) по границам субзёрен вместо их выделения на зёренных границах или внутри зерна.

Упрочнение фасонного проката из
малоуглеродистых и низколегированных сталей

Процесс обработки

В 80-е годы XX века было внедрено производство термически упрочнённого фасонного проката (уголки, швеллеры, двутавровые балки) на среднесортовом стане 450 Западно-Сибирского Металлургического Комбината (Новокузнецк). После прохождения последней клети прокат проходил камеру с подачей воды под давлением для ускоренного охлаждения поверхности металла. После прохождения охлаждающей камеры происходил самоотпуск поверхности проката за счёт тепла, аккумулированного в центральной части профиля. Центральная часть профиля охлаждалась с повышенной скоростью. Марки стали, проходившие термомеханическое упрочнение — Ст3сп, Ст3пс, 09Г2С, 12Г2С и т. п.

Влияние на микроструктуру и свойства

Процесс термомеханического упрочнения привёл к образованию микроструктуры «естественного композита». Поверхностные слои имели строение отпущенного мартенсита с небольшими количествами бейнита. Микроструктура внутреннего слоя представляла обычную феррито-перлитную смесь, но более мелкозернистую. Соответственно менялась и твёрдость, определённая по методу Виккерса. Поверхностные слои имели твёрдость до 300 HV, тогда как твёрдость центрального слоя составляла около 150 HV.

Файл:Твёрдость термически упрочнённого фасонного проката.jpg
Твёрдость термически упрочнённого фасонного проката (типичная зависимость)

При электронномикроскопическом исследовании была видна фрагментация зёрен феррита.

Файл:Субзёрна в термически упрочнённом фасонном прокате.jpg
Субзёрна в термически упрочнённом фасонном прокате (просвечивающая электронная микроскопия)

Существенное повышение прочности не приводило к снижению пластичности и сопротивления хрупкому разрушению. Например, для обычной углеродистой стали ВСт3сп предел прочности повышался до уровня 530 МПа (с уровня 350 МПа). При этом сопротивление хрупкому разрушению (ударная вязкость KCU при −70 °C) было очень высоким — 150 Дж/см².

Сварка профилей из термически упрочнённой в потоке прокатного производства стали не приводило к существенному снижению хладостойкости из-за изменений в зоне термического влияния. Локальное разупрочнение (мягкая прослойка) не приводило к снижению агрегатной прочности. Эти результаты дали возможность применять такой прокат в сварных строительных конструкциях северного исполнения вместо низколегированных хладостойких сталей.

Упрочнение листового проката из
малоуглеродистых и низколегированных сталей

Процесс обработки

Была разработана технология термического упрочнения листового проката в потоке прокатки на стане 3600 Металлургического комбината «Азовсталь» (Мариуполь). Марки стали, проходившие термическое упрочнение — ВСт3пс, ВСт3сп, 12Г2С, 17Г2С, 14Г2АФ и др.

Влияние на микроструктуру и свойства

В результате термомеханического упрочнения была получена макронеоднородная слоистая структура (видна при визуальном контроле травлёного сечения). Методами просвечивающей электронной микроскопии в поверхностных слоях была обнаружена развитая ячеистая субструктура (полигонизация). По субзёренным границам выделялись карбидные частицы. Плотность дислокаций в поверхностном слое составляла: ρ = 7 <math>x 10 ^9 cm^-</math><math>^2</math>. В центральных по толщине слоях листа увеличивалась доля вытянутых зёрен феррита. Плотность дислокаций уменьшалась до ρ = 1,7<math>x 10 ^9 cm^-</math><math>^2</math>.

Файл:Микроструктура листового термически упрочнённого проката.jpg
Микроструктура листового термически упрочнённого проката у поверхности и в середине листа (по толщине)

Отличительной особенностью термически упрочнённого листового проката является изменение формы диаграммы деформации.Отклонение от закона Гука (упругого поведения) начинается при ме́ньших напряжениях (<math>0,80 - 0,85 \sigma_T </math>). Порог хладноломкости для образцов на ударную вязкость с острым надрезом составлял около −70 °C. Исследование хладостойкости сварных соединений термически упрочнённого листового проката (моделирование с помощью наплавки) показало, что возможно их применение для строительства в климатических районах до −65 °C.

Список литературы

  1. М. Л. Бернштейн, В. А. Займовский, Л. М. Капуткина. Термомеханическая обработка стали. М., «Металлургия», — 1983.
  2. М. Л. Бернштейн. Диаграммы горячей деформации, структура и свойства стали. М., «Металлургия», — 1989.
  3. М. А. Тылкин, В. И. Большаков, П. Д. Одесский. Структура и свойства строительной стали. М. «Металлургия», — 1983.
  4. А. С. Ключ. Термически упрочнённый фасонный прокат из углеродистой стали. В сборнике «Повышение свойств и эффективности использования проката для строительных стальных конструкций». М., — 1990.
  5. Л. И. Бебих, А. С. Ключ и др. Повышение прочности и хладостойкости листового проката из низколегированной стали путём термического упрочнения. В сборнике «Повышение свойств и эффективности использования проката для строительных стальных конструкций». М., — 1990.

Ссылки