Шаблон:Перенести сюдаТочки Торричелли — две точки, из которых все стороны треугольника видны либо под углом в 60°, либо под углом в 120°. Эти точки в треугольнике — «парные». Иногда эти точки называют точками Ферма или точками Ферма-Торричелли.
Две Точки Торричелли — это точки пересечения отрезков, соединяющих вершины треугольника:
Первая точка Торричелли — точка треугольника, из которой все стороны видны под углом в 120° (по определению).
Первая точка Торричелли имеет наименьшую сумму расстояний до вершин треугольника. Она существует только в треугольниках с углами, меньшими 120°; при этом она единственна и, значит, является частным случаем точки Ферма, существующей в любом треугольнике.
Две точки Торричелли и точка Лемуана лежат на одной прямой.
Гипербола Киперта — описанная гипербола, проходящая через центроид и ортоцентр. Если на сторонах треугольника построить подобные равнобедренные треугольники (наружу или внутрь), а затем соединить их вершины с противоположными вершинами исходного треугольника, то три таких прямые пересекутся в одной точке, лежащих на гиперболе Киперта. В частности, на этой гиперболе лежат точки Торричелли и точки Наполеона (точки пересечения чевиан, соединяющие вершины с центрами построенных на противоположных сторонах правильных треугольников)[1].
Замечание
Кстати, на первом рисунке справа центры трёх равносторонних треугольников сами являются вершинами нового равностороннего треугольника (Теорема Наполеона). Кроме того, <math>AA'=BB'=CC'</math>.