Русская Википедия:Троичный компьютер

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:НТЗ

Трои́чный компью́тер — компьютер, построенный на двоичных и троичных логических элементах и узлах[1], работающий в двоичной и троичной системе счисления по законам двоичной и троичной логики с применением двоичных и троичных алгоритмов.

История

Файл:Fibonacci2.jpg
Леонардо Пизанский (Фибоначчи)
Файл:TCA2.JPG
Трёхуровневая 3-тритная цифровая компьютерная система TCA2[13]

Преимущества троичных ЭВМ (компьютеров)

Шаблон:Нет ссылок в разделе

Троичные ЭВМ (компьютеры) обладают рядом преимуществ по сравнению с двоичными ЭВМ (компьютерами).

При сложении тритов в троичных полусумматорах и в троичных сумматорах количество сложений в <math>\log_23=1,58...</math> раза меньше, чем при сложении битов в двоичных полусумматорах и в двоичных сумматорах, и, следовательно, быстродействие при сложении в 1,58.. раза (на 58 %) больше.

При применении симметричной троичной системы счисления и сложение, и вычитание производится в одних и тех же двухаргументных (двухоперандных) полусумматорах-полувычитателях или полных трёхаргументных (трёхоперандных) сумматорах-вычитателях без преобразования отрицательных чисел в дополнительные коды, то есть ещё немного быстрее, чем в двоичных полусумматорах и в двоичных полных сумматорах, в которых для вычитания используется сложение с двумя преобразованиями отрицательных чисел, сначала в первое дополнение, а затем во второе дополнение, то есть два дополнительных действия («инверсия» и «+1») на каждое отрицательное слагаемое.

Сложение сильно тормозят переносы, которые в двоичном сумматоре возникают в 4 случаях из 8 (в 50 % случаев), в троичном несимметричном сумматоре возникают в 9 случаях из 18 (в 50 % случаев), а в троичном симметричном сумматоре в 8 случаях из 27 (в 29,6…% случаев), что ещё немного увеличивает быстродействие при применении троичных симметричных сумматоров.

3-битная троичная физическая система кодирования и передачи данных 3B BCT имеет на 15,3 % большее быстродействие, чем обычная двоичная система кодирования и передачи данных[15], что ещё немного увеличивает быстродействие.

3-битная троичная физическая система кодирования троичных данных 3B BCT избыточна (используются только 3 кода из 8), что позволяет обнаружить ошибки и повысить надёжность изделия.

В сумме, приблизительно в 2 раза большее увеличение быстродействия в изделиях долговременного применения может окупить приблизительно в 1,5 раза большие единовременные затраты на аппаратную часть. В некоторых изделиях одноразового применения увеличение быстродействия и надёжности может перевесить увеличение затрат на аппаратную часть.

Кроме этого, вместо 4 унарных, 16 бинарных и 256 тринарных двоичных логических функций в троичных ЭВМ появляются 27 унарных, 19 683 бинарных и 7 625 597 484 987 тринарных (трёхоперандных) троичных логических функций, которые намного мощнее бинарных. Увеличение «логической мощности» в неизвестное число раз, может в 19 683/16 = 1230 раз, а может в 7 625 597 484 987/256 = 29 787 490 175 раз (нет методики сравнения «логических мощностей»), но намного, может увеличить «логическую мощность» даже медленнодействующих физических систем кодирования и передачи данных, в том числе и трёхуровневой (3-Level LevelCodedTernary (3L LCT), «однопроводной»).

Подобно тому, как в двоичных ЭВМ деление на 2 осуществляется для целых чисел операцией сдвига кода на 1 разряд вправо, а для чисел в виде мантиссы и экспоненты (с плавающей запятой) вычитанием 1 из экспоненты, в троичных ЭВМ для целых чисел операцией сдвига кода на 1 разряд вправо, а для чисел в виде мантиссы и экспоненты (с плавающей запятой) вычитанием из экспоненты 1 производится деление на 3. Из-за этого свойства троичные алгоритмы, а некоторые троичные алгоритмы работают быстрее двоичных алгоритмов, работают на троичных ЭВМ быстрее, чем на двоичных ЭВМ, что ещё немного увеличивает скорость решения некоторых задач, особенно имеющих троичность, на троичных ЭВМ.

В троичной системе знак числа может иметь все три значения: «-», «0» и «+», то есть лучше используется троичная суть знака числа. Это можно сделать и в двоичной системе, но в двоичной системе потребуется два двоичных разряда (бита) на знак числаШаблон:Прояснить, а в троичной системе только один троичный разряд (трит).

Может быть, что на первых порах пакеты прикладных программ с применением более мощной, чем двоичная логика, троичной логики, особенно в задачах имеющих троичность (обработка RGB-изображений, трёхкоординатные (объёмные) x, y, z-задачи и др.) позволит существенно сократить время решения многих троичных задач на обычных двоичных компьютерах (двоичная эмуляция троичных эвм и троичной логики на двоичных компьютерах).

Удельное натуральнологарифмическое число кодов (чисел) (плотность записи информации) описывается уравнением <math>y = \frac{\ln x}x</math>, где <math>x</math> — основание системы счисления[16]. Из уравнения следует, что наибольшей плотностью записиШаблон:Термин информации обладает система счисления с основанием, равным основанию натуральных логарифмов, то есть равным числу Эйлера е=2,71… Эту задачу решали ещё во времена Непера при выборе основания для логарифмических таблиц.

При хранении чисел троичная система более экономична по количеству используемых знаков, чем двоичная и десятичная. Также троичная логика совместима с двоичной. Однако, в случае создания компьютера на троичной логике, который был бы полностью аналогичен существующим двоичным (и имел бы дополнительные преимущества повышенной интенсивности обработки информации и разработки в области обеспечения синхронизации процессов), то такой компьютер должен был бы быть совместим с двоичными, чтобы обмениваться с ними информацией.[17]

Элементы троичных ЭВМ (компьютеров)

Известны троичные элементы следующих видов:

Импульсные

[18] [19]

Потенциальные

Трёхуровневые

  • В трёхуровневых потенциальных линиях передачи цифровых данных (3-Level CodedTernary, 3L CT, «однопроводных») трём устойчивым состояниям соответствуют три уровня напряжения (положительное, нулевое, отрицательное), (высокое, среднее, низкое)[14][20][21]. Имеют меньшее итоговое быстродействие, чем обычная двоичная система[22].

Амплитуда наибольшего сигнала помехи равной помехоустойчивости с двухуровневыми элементами не более (+/-)Uп/6 (16,7 % от Uп), при делении всего диапазона напряжений на три равные части и номинальных напряжениях сигналов в срединах поддиапазонов.

Недостатки:

  1. необходимость, для равной помехоустойчивости с обычной двоичной системой, увеличения размаха сигнала в 2 раза,
  2. неодинаковость среднего состояния с верхним и нижним состояниями,
  3. неодинаковость амплитуд переходов из крайних состояний в среднее (одинарная амплитуда) и переходов из одного крайнего состояния в другое крайнее состояние (двойная амплитуда).

Двухуровневые

Амплитуда наибольшего сигнала помехи не более (+/-)Uп/4 (25 % от Uп), при делении всего диапазона напряжений на две равные части и номинальных напряжениях сигналов в срединах поддиапазонов.

  • Двухуровневые, потенциальные (2-Level BinaryCodedTernary, 2L BCT), в которых логические элементы (инверторы) имеют два устойчивых состояния с двумя уровнями напряжения (высокое, низкое), а троичность работы достигается системой обратных связей (троичный триггер)[23]. Амплитуда сигнала помехи до Uп/2 (до 50 % от Uп).

Двухбитные

  • Двухуровневые двухбитные (2-Level 2-Bit BinaryCodedTernary, 2L 2B BCT, «двухпроводные»)[24].

Недостатки:

1. два провода на один разряд.

Трёхбитные

  • Двухуровневые трёхбитные (2-Level 3-Bit BinaryCodedTernary, 2L 3B BCT, «трёхпроводные»)[25]. По скорости равны троичным двухуровневым двухбитным триггерам. По сравнению с обычными двоичными RS-триггерами увеличивают объём хранимых и передаваемых данных в 1,5 раза на один разряд, но и аппаратные затраты тоже увеличиваются. Быстродействие выше, чем в обычной двоичной системе, но ниже, чем в четверичной четырёхбитной системе, но аппаратные затраты растут меньше, чем в четверичной четырёхбитной системе. Из-за избыточности трёхбитного кода появляется возможность обнаружения одиночных однобитных ошибок на аппаратном уровне, что может оказаться полезным в устройствах повышенной надёжности и может найти применение в устройствах, в которых надёжность и быстродействие являются более значимыми параметрами, чем аппаратные затраты.

Недостатки:

1. три провода на один разряд.

Смешанные

  • Смешанные, в которых вход данных трёхуровневый по одной линии и земле, а выход данных двухуровневый по трём линиям и земле.[26]

Узлы троичных ЭВМ

Полный троичный тринарный (трёхоперандный) одноразрядный сумматор является неполной троичной логической тринарной (трёхоперандной) функцией.

Будущее

Дональд Кнут отмечал, что из-за массового производства двоичных компонентов для компьютеров троичные компьютеры занимают очень малое место в истории вычислительной техники. Однако троичная логика элегантнее и эффективнее двоичной и в будущем, возможно, вновь вернутся к её разработке[27].

В работе [Jin, He, Lü 2005][28] возможным путём считают комбинацию оптического компьютера с троичной логической системой. По мнению авторов работы, троичный компьютер, использующий волоконную оптику, должен использовать три величины: 0 или ВЫКЛЮЧЕНО, 1 или НИЗКИЙ, 2 или ВЫСОКИЙ, то есть трёхуровневую систему. В работе же [Куликов А. С.][25] автор пишет, что более быстродействующей и более перспективной является трёхчастотная система с тремя величинами: (f1,f2,f3) равными «001» = «0», «010» = «1» и «100» = «2», где 0 — частота выключена, а 1 — частота включена.

Будущий потенциал троичной вычислительной техники был также отмечен компанией Hypres, которая активно участвует в её изучении. IBM в своих публикациях также сообщает о троичной вычислительной технике, но активно в этом направлении не участвует.

См. также

Примечания

Шаблон:Примечания

Ссылки

Шаблон:Переработать

Шаблон:Классы компьютеров Шаблон:Rq

Шаблон:Спам-ссылки

  1. D. C. Rine (ed.), Computer Science and Multiple-Valued Logic. Theory and Applications. Elsevier, 1977, 548p. ISBN 9780720404067
  2. Славянская «золотая» группа Шаблон:Wayback. Mузей Гармонии и Золотого Сечения.
  3. Шаблон:Cite web
  4. «Троичный принцип» Николая Брусенцова Шаблон:Wayback. Mузей Гармонии и Золотого Сечения
  5. Шаблон:Cite web
  6. Троичная механическая счётная машина Томаса Фоулера Шаблон:Wayback.
  7. Шаблон:Cite web
  8. Раздел 5.2 Choice of binary system
  9. Шаблон:Cite web
  10. Шаблон:Статья
  11. Шаблон:Книга
  12. Шаблон:Cite web
  13. Шаблон:Cite web
  14. 14,0 14,1 Шаблон:Cite web
  15. Шаблон:Cite web
  16. Шаблон:Cite web
  17. Шаблон:Cite web
  18. http://emag.iis.ru/arc/infosoc/emag.nsf/f0c3e40261f64c5b432567c80065e37d/72de119fdb628501c3257193004180c8?OpenDocument Шаблон:Wayback МГУ — не конкурент, а колыбель науки или о том, что в информационном обществе нельзя без Аристотеля. Н. П. Брусенцов. О «Сетуни», её разработках, производстве
  19. http://www.trinitas.ru/rus/doc/0226/002a/02260054.htm Шаблон:Wayback АКАДЕМИЯ ТРИНИТАРИЗМА. Дмитрий Румянцев. Долой биты! (Интервью с конструктором троичной ЭВМ)
  20. Шаблон:Cite web
  21. Шаблон:Cite web
  22. Шаблон:Cite web
  23. Шаблон:Cite web
  24. http://trinary.ru/materials/ternary-binary-based-trigger Шаблон:Wayback Троичные триггеры на двоичных логических элементах
  25. 25,0 25,1 Шаблон:Cite web
  26. Шаблон:Cite web
  27. D.E. Knuth, The Art of Computer Programming — Volume 2: Seminumerical Algorithms, pp. 190—192. Addison-Wesley, 2nd ed., 1980. ISBN 0-201-03822-6.
  28. Ternary Optical Computer