Русская Википедия:Универсальная арифметика
Шаблон:Литературное произведение «Универсальная арифметика» (или «Всеобщая арифметика», Шаблон:Lang-la) — монография Исаака Ньютона, впервые опубликованная в 1707 году на латинском языке. Универсальной арифметикой Ньютон называл алгебру, и данный труд внёс существенный вклад в развитие этого раздела математики. Позднее книгу под таким же названием опубликовал Эйлер в 1768—1769 годах.
История создания
Среди курсов, которые вёл в Тринити-колледже Исаак Ньютон, был курс алгебры, и, согласно правилам, Ньютон сдал в университетскую библиотеку аккуратно оформленный латинский конспект этих лекцийШаблон:Sfn. После отхода Ньютона от преподавательской деятельности (1696 год) его преемник на кафедре, Уильям Уистон, опубликовал эту рукопись под названием «Универсальная арифметика». В 1720 году Джозеф Рафсон издал английский перевод книги (Шаблон:Lang-en). К первому изданию был приложен мемуар Галлея о численном методе нахождения корней уравнений.
Книга вызвала большой интерес и неоднократно переиздавалась на разных языках; в XVIII веке вышли 5 только латинских её переизданий. Каждое новое издание сопровождалось растущим числом комментариев и дополнений.
Краткое содержание
В начале книги Ньютон поясняет отношение арифметики и алгебры: цель алгебры — открыть и исследовать общие законы арифметики, а также предложить практические методы решения уравнений. Далее Ньютон даёт классическое определение вещественного числа как отношения результата измерения к единичному эталонуШаблон:Sfn:
Шаблон:Начало цитатыПод числом мы понимаем не столько множество единиц, сколько отвлечённое отношение какой-нибудь величины к другой величине того же рода, принятой за единицу. |
Это определение фактически завершает многолетний процесс «уравнения в правах» целых, дробных и иррациональных чисел. В отличие от многих математиков того времени, Ньютон не рассматривал отдельно отрицательные числа и на примерах показал их полезность.
Затем излагается теория десятичных дробей, действий с ними и используемых обозначений. Ньютон в своих выкладках использовал обозначения Декарта, мало чем отличающиеся от современных. Однако, в отличие от Декарта, он полностью отделил алгебру от геометрии, подчеркнув, что при всей взаимной пользе у этих наук разные предметы.
В отдельных разделах, с многочисленными примерами и геометрическими иллюстрациями, излагаются действия с дробями, извлечение корней, типы уравнений, методы их упрощения и решения. Ньютон почти не приводит доказательств своих утверждений и основное внимание уделяет прикладным аспектам материала. Некоторые высказанные в книге глубокие теоремы удалось строго доказать только в XIX веке[1].
Особое внимание Ньютон уделил решению алгебраических уравнений, эта тема занимает почти половину книги. В ходе изложения приводятся решения 77 типовых задач (в основном геометрического характера), снабжённые подробными разъяснениями и методическими рекомендациями.
Среди других открытий Ньютона, изложенных в книге, можно упомянуть:
- Одна из первых формулировок основной теоремы алгебры: число вещественных корней многочлена не превосходит его степени, а число комплексных корней всегда чётно.
- Обобщение декартовского «правила знаков» для определения числа корней многочлена.
Перевод на русский язык
Литература
- Шаблон:Книга
- Шаблон:Книга
- Юшкевич А. П. О «Всеобщей арифметике» И. Ньютона. // В книге: Ньютон И. Всеобщая арифметика. М.: Изд. АН СССР, 1948, стр. 347-391.
Ссылки
Примечания
- ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокNIK174
не указан текст