Уравнение в функциональных производных — обобщение понятия дифференциального уравнения на случай бесконечного множества переменных. Применяется в функциональном анализе и теоретической физике (уравнение Швингера — Томонаги, уравнения Швингера).
Обыкновенное уравнение в функциональных производных получается с помощью предельного перехода к бесконечному множеству переменных из уравнения в полных дифференциалахШаблон:Sfn:
- <math>du = p_{1}dx_{1} + p_{2}dx_{2} + ... + p_{n}dx_{n}</math> (1),
где: <math>u</math> и коэффициенты <math>p_{j}</math> являются функциями от <math>n</math> переменных <math>x_{1}, x_{2}, ..., x_{n}</math>.
При переходе к пределу <math>n \to \infty</math> в уравнении (1) сумма превратится в интеграл и оно примет вид:
- <math>\delta U = \int_{0}^{1} f [x(t); U, \tau]\delta x (\tau) d \tau</math> (2),
где: <math>U</math> - неизвестный функционал от функции <math>x(t)</math>, <math>\tau</math> - переменная интегрирования.
При помощи понятия функциональной производной это уравнение можно записать в виде:
- <math>U_{x(\tau)}^{'} = f [x(t); U, \tau]</math> (3),
где: <math>U_{x(\tau)}^{'}</math> - функциональная производная.
Если семейство функций <math>x(t)</math> принадлежит пространству <math>L_{2}</math> и зависит от числового параметра, то уравнение в функциональных производных превращается в дифференциальное уравнение первого порядка, которое удобно решать методом последовательных приближенийШаблон:Sfn.
Если функционал <math>U</math> зависит не только от функции <math>x(t)</math>, но и от одного или нескольких числовых параметров, то уравнение в функциональных производных превращается в интегро-дифференциальное уравнение, для решения которого также можно использовать метод последовательных приближенийШаблон:Sfn.
Примечания
Шаблон:Примечания
Литература
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|