Уравнения Петерсона ― Кодацци (или Петерсона ― Майнарди ― Кодацци) ― уравнения, составляющие вместе с уравнением Гаусса необходимые и достаточные условия интегрируемости системы, к которой сводится задача восстановления поверхности по её первой и второй квадратичным формам.
Уравнения
Уравнения Петерсона ― Майнарди ― Кодацци имеют вид
- <math>\frac{\partial b_{i1}}{\partial u^2} +\Gamma^1_{i1}b_{12}+\Gamma^2_{i1}b_{22}=
\frac{\partial b_{i2}}{\partial u^1} +\Gamma^1_{i2}b_{11}+\Gamma^2_{i2}b_{21}</math>
где <math>b_{ij}</math> ― коэффициенты второй квадратичной формы, <math>\Gamma^i_{jk}</math> ― символы Кристоффеля.
Свойства
- Теорема Бонне. Пусть <math>g=g_{ij}</math> и <math>b=b_{ij}</math>, <math>i,j\in \{1,2\}</math> две гладкие квадратичные формы заданые в односвязной области <math>U</math>. Если <math>g</math> и <math>b</math> удовлетворяют уравнениям Петерсона ― Кодацци, тогда существует и притом единственная (с точностью до движений) поверхность в <math>\mathbb{R}^3</math>, для которой эти формы являются первой и второй квадратичными формами.
- Эту теорему также доказал Петерсон в своей диссертации.
История
Уравнения впервые найдены Петерсоном[1] в 1853,
переоткрыты Майнарди[2]
и Кодацци(1867)[3].
Примечания
Шаблон:Примечания
Литература
- Рашевский П. К., Курс дифференциальной геометрии, М., 1956.
- Шаблон:Книга
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|
- ↑ Peterson, K. M. "Über die Biegung der Flächen." Dorpat. Kandidatenschrift. 1853.
- ↑ Mainardi, G. "Sulle coordinate curvilinee d'una superfice dello spazio." Giornale del R. Istituto Lombardo 9, 385—398, 1856.
- ↑ Codazzi, D. "Sulle coordinate curvilinee d'una superficie dello spazio." Ann. math. pura applicata 2, 101—19, 1868—1869.