Русская Википедия:Устройство защиты при дуговом пробое

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Устройство защиты при дуговом пробое (УЗДП)Шаблон:Sfn, в документации производителей также устройство защиты от искрения[1] (УЗИс), AFCI, AFDDШаблон:Переход — электронное устройство, предназначенное для снижения эффектов дугового пробоя путём разъединения цепи при обнаружении дугового пробояШаблон:Sfn. Основная сфера применения УЗДП — бытовые низковольтные сети, основная задача УЗДП — предотвращение пожара, вызванного дуговым пробоем (искрением) неисправной проводки. В отличие от промышленных систем дуговой защиты, наблюдающих за точечными источниками дугового пробоя с помощью оптоэлектронных датчиков, бытовое УЗДП отслеживает и анализирует высокочастотные составляющие тока, протекающего в контролируемой цепи. УЗДП — сложный прибор на базе микроконтроллера, реализующего проприетарные алгоритмы цифровой селекции и обработки сигналов.

Внедрение УЗДП на рынок США началось в 1999 году, на рынок Западной Европы в 2012 году. Важнейшая, не решённая полностью проблема конструирования и эксплуатации УЗДП — ложные срабатывания защиты из-за высокочастотных помех, не связанных с аварийным дуговым пробоем.

Дуговой пробой в бытовых сетях

Вид пробоя Вероятность срабатывания устройств защитыШаблон:Sfn
АВ УЗО АВДТ УЗДП
Файл:Arc fault mode 2. Parallel L-PE.svg
Параллельный фаза-земля
Вероятно Да Да Да
Файл:Arc fault mode 1. Parallel L-N.svg
Параллельный фаза-нейтраль
Вероятно Нет Вероятно Да
Файл:Arc fault mode 3. Serial.svg
Последовательный
в цепи фазы или нейтрали
Нет Нет Нет Да

Дуговой пробой — непреднамеренная последовательная или параллельная электрическая дуга между проводникамиШаблон:Sfn — вызывает опасный локальный перегрев проводников и воспламенение их изоляции и примыкающих строительных конструкций; это одна из основных причин бытовых пожаров из-за неисправностей электрической проводкиШаблон:Sfn. Дуговой пробой зачастую невозможно обнаружить и пресечь с помощью традиционных предохранителей, автоматических выключателей (АВ, «автоматов») и устройств дифференциального тока (УЗО) или их комбинаций (автоматические выключатели, управляемые дифференциальными током — АВДТ, или «дифференциальные автоматы»).

Параллельный пробой между фазным проводом (L) и проводом заземления (PE) может и должен быть обнаружен устройством дифференциального тока; параллельный пробой между фазным проводом и нейтралью (N) УЗО не детектируетсяШаблон:Sfn. При катастрофических пробоях, сопровождающих короткое замыкание фазы на нейтраль или землю, должен оперативно сработать электромагнитный расцепитель автоматического выключателя, но на практике это происходит не всегдаШаблон:SfnШаблон:Sfn. Фактические величины сверхтоков короткого замыкания в бытовой проводке составляют, по данным Siemens, от 150 до 500 А. На нижней границе этого диапазона гарантированно быстро сработает лишь «автомат» на номинальный ток не более 16 А с время-токовой характеристикой BШаблон:Sfn. Быстрое срабатывание автоматов на бо́льшие токи, или с характеристикой С в этих условиях не гарантируетсяШаблон:Sfn.

Последовательный дуговой пробой (искрение) в цепи нагрузки не детектируется ни автоматическими выключателями, ни УЗО, ни АВДТ: ток, протекающий в цепи при последовательном пробое, меньше, чем ток в исправной цепиШаблон:Sfn. Типичные причины последовательных дуговых пробоев — длительный перегрев проводов недостаточного сечения, старение изоляционных материалов, локальные повреждения проводов, ослабленные контакты розеток, выключателей и патронов для электролампШаблон:SfnШаблон:SfnШаблон:Sfn. Воспламенение наиболее вероятно в диапазоне токов дуги 3—10 А; необходимая для воспламенения длительность дуги не превышает 20 сШаблон:Sfn. Этот тип пробоя наименее заметен, и потому наиболее опасенШаблон:Sfn.

Характерная особенность тока дугового пробоя — широкий спектр с частотным распределением, близким к розовому шуму, и простирающийся до примерно 1 ГГцШаблон:Sfn. Этот широкополосный сигнал естественным образом модулируется удвоенной сетевой частотой (100 либо 120 Гц): в окрестности перехода напряжения сети через ноль дуга прерывается, генерация высокочастотной помехи прекращается; с ростом мгновенного значения напряжения дуга загорается вновьШаблон:Sfn. Устройства защиты при дуговом пробое детектируют оба эти признака — спектральную сигнатуру и амплитудную модуляцию — и приводят в действие защитный расцепитель тогда, и только тогда, когда оба признака наблюдаются в течение достаточно долгого, но не слишком долгого времени. Слишком быстрая реакция приводит к ложным срабатываниям, слишком медленная — к пожарам. Чем больше ток дугового пробоя в контролируемой цепи, тем меньшим временем принятия решения располагает устройство защитыШаблон:Sfn.

Внедрение, стандартизация, основные характеристики

Конструктивные варианты
Файл:AFCI.jpg Файл:Siemens AFDD combination LS or FI.png Файл:УЗДП с функцией реле контроля напряжения УЗМ-50МД.jpg
Одномодульное УЗДП американского стандарта. Белая спираль — провод подключения к нейтрали Одномодульный БОДПШаблон:Переход европейского стандарта, работающий в связке с внешним АВ или АВДТ Двухмодульное УЗДП российского бренда, использующее вместо механического разъединителя электромагнитное реле[1]

Северная Америка

УЗДП — детище развития микропроцессорных технологий. Первые патенты на средства защиты от дугового пробоя были выданы ещё в 1930-е годы, но применяемые на практике технические решения были запатентованы в 1990—2005 годыШаблон:Sfn. Основные разработки были выполнены в США по заказу государственных органов и отраслевых ассоциаций, встревоженных неблагоприятной статистикой пожаров в странеШаблон:Sfn. В 1980-е годы риск гибели от пожара в США превосходил показатели европейских стран в 2—4 раза, а основной причиной пожаров были неисправности проводки жилых домовШаблон:Sfn. Технически простейшее решение — ужесточение время-токовых характеристик автоматических выключателей — было отвергнуто; взамен в 1996 году UL и Ассоциация производителей электрооборудования (NEMA) стали продвигать внедрение УЗДПШаблон:Sfn.

Первые устройства нового типа появились на рынке США в 1997 году; в 1999 разработчик национальных правил безопасности (NFPA) потребовал обязательного применения УЗДП на линиях, питающих розетки в спальных комнатах жилых домов[2]. В 2002—2008 годы сфера обязательного применения и функционал УЗДП последовательно расширялись; в то же время поток новых патентных заявок иссяк — технология, как казалось, достигла зрелого уровняШаблон:Sfn. С 2008 года электрические цепи всех, без исключения, жилых помещений следовало защищать одновременно автоматическими выключателями, УЗО и УЗДП, способными детектировать и параллельные, и последовательные пробои[2]. Новые правила, однако, не имели силы федерального закона, и должны были утверждаться законодателями каждого штата в отдельности. В Канаде требование обязательной установки УЗДП, аналогичное американскому, впервые появилось в 2002 году[2].

«Комбинированные УЗДП» (Шаблон:Lang-en) американского стандарта, предназначенные для защиты индивидуальных линий, совмещают функции автоматического выключателя на 15 или 20 А и УЗДП с порогом срабатывания при последовательном пробое 5 А. «Групповые УЗДП» (Шаблон:Lang-en) американского стандарта, защищающие группы линий или всю проводку жилого дома, срабатывают при токе пробоя 75 А. Стоимость «комбинированного УЗДП», по американским данным 2007 года, составляла 30—35 долларов — в 10—20 раз дороже автоматического выключателя; по нормам 2008 года в типичном жилом доме следовало установить примерно двенадцать таких устройствШаблон:Sfn. Удорожание комплектующих вызвало организованный протест строительных подрядчиков и представлявших их лоббистов[3], но давление страховщиков и производителей УЗДП оказалось сильнее, и к февралю 2019 года 47 из 50 штатов США сделали применение УЗДП обязательным на своих территориях.

Эксплуатация УЗДП первого поколения выявила массовые проблемы с ложными срабатываниями автоматики[4]. В отдельных документированных случаях «ложное» срабатывание УЗДП вскрыло реально существовавшие дуговые пробои малой мощности, которые не обнаруживались ни визуально, ни традиционными средствами защиты[4]. Намного чаще УЗДП срабатывали при подключении к исправным линиям исправной, но систематически искрящей аппаратуры[4]. Пылесосы и электроинструменты, построенные на базе универсальных коллекторных электродвигателей, генерируют примерно тот же спектр высокочастотных помех, что и аварийный дуговой пробой, а мощность помехи от двигателя заметно превышает необходимый порог срабатывания УЗДПШаблон:Sfn. Ток искрящей электродрели и ток последовательного дугового пробоя отличаются лишь частотой модуляции высокочастотной помехи: у дрели она пропорциональна оборотам двигателяШаблон:Sfn.

Европа

В странах Западной Европы внедрение УЗДП началось в 2012 годуШаблон:Sfn. Действующий стандарт МЭК 62606 был впервые введён в действие в 2013 году и пересмотрен в 2017 году. Вместо американской аббревиатуры AFCI (Шаблон:Lang-en, «разъединитель при дуговом пробое»), в Европе вошла в обиход аббревиатура AFDD (Шаблон:Lang-en, «устройство обнаружения дугового пробоя»). Европейский стандарт содержит только технические требования к самим УЗДП и методику их испытаний, и не содержит требований обязательной установки УЗДП. Составленный на основе МЭК 62606 германский стандарт был утверждён в 2014 году; в конце 2017 года в Германии вступила в силу национальная норма об обязательной установке индивидуальных УЗДП на линиях, прокладываемых в жилых комнатах, в постройках из горючих материалов, музеях и т.пШаблон:Sfn. Российский ГОСТ МЭК 62606-2016 был принят в конце 2016 годаШаблон:Sfn; по состоянию на начало 2019 года национальная российская практика применения УЗДП ещё не сложилась.

Западноевропейская практика складывалась отлично от американской, как в силу иной нормативной среды и культуры строительства, так и в силу объективных причин. Дуговой пробой в сети 220—240 В развивается иначе, чем в американских сетях на 100—120 В: «европейская дуга» устойчивее «американской», она менее склонна к периодическим затуханиям с повторными вспышкамиШаблон:Sfn. Минимальный ток дуги, детектируемый УЗДП в сети 230 В, должен составлять всего 2,5 АШаблон:Sfn; европейский УЗДП обязан детектировать и последовательные, и параллельные пробоиШаблон:Sfn. Время срабатывания защиты при токе дугового пробоя 2,5 А должно составлять не более 1 с; с ростом детектируемого тока время срабатывания последовательно уменьшается, вплоть до 0,12 с при токе 32 А и вышеШаблон:Sfn. УЗДП европейского стандарта предназначены только для защиты индивидуальных линий; производители не рекомендуют или запрещают применять УЗДП для защиты групп линий, общеквартирных или общедомовых электросетейШаблон:Sfn[5].

Внутреннее устройство

Файл:Блок-схема УЗДП по данным ABB.svg
Блок-схема УЗДП c двухполюсным механизмом автоматического выключателяШаблон:Sfn. Производитель гарантирует корректную работу УЗДП при любом подключении входных шин — и снизу (как принято в Европе), и сверху (как принято в России)Шаблон:Sfn.

Конструктивная основа типичного УЗДП европейского стандарта — силовой разъединитель с обязательным механизмом свободного расцепленияШаблон:Sfn, аналогичный применяемым в автоматических выключателях и УЗО. УЗДП, разъединяющий только фазный провод, обычно строится в стандартном двухмодульном корпусе: в одном модуле размещается блок обнаружения дугового пробоя (БОДП), в другом — механизм автоматического выключателя с штатными тепловым и электромагнитным расцепителямиШаблон:Sfn. Третий расцепитель, управляемый тиристорным ключом, отключает нагрузку по команде БОДПШаблон:Sfn. Выпускаются также одномодульные БОДП, предназначенные для управления внешним автоматическим выключателемШаблон:Sfn и трёхмодульные комбинированные УЗДП с функцией АВДТШаблон:Sfn.

Блок обнаружения дугового пробоя отслеживает ток в фазном проводнике с помощью двух трансформаторов тока. Трансформатор низкочастотного канала считывает мгновенное значение тока сетевой частоты, которое выпрямляется диодным мостом (без использования сглаживающего фильтра) и усиливается нормирующим усилителемШаблон:Sfn. Трансформатор высокочастотного канала считывает сигнал в узкой полосе частот, лежащей в диапазоне от 5 до 50 МГЦ, исключая особо зашумлённую полосу 15—18 МГцШаблон:SfnШаблон:Sfn. На практике в устройствах ABB используется полоса частот в окрестности 10 МГцШаблон:Sfn, в устройства Siemens полоса частот 22—24 МГцШаблон:Sfn (данные 2018 и 2012 годов). Узкополосный сигнал высокочастотного канала выпрямляется детектором среднеквадратического значенияШаблон:Sfn. Встроенный микроконтроллер БОДП оцифровывает оба аналоговых сигнала и анализирует их средствами цифровой обработки сигналов. Микроконтроллер питается от маломощного импульсного блока питания, включённого между фазным проводником и нейтральюШаблон:Sfn; какие-либо иные соединения между ними в пределах УЗДП не допускаютсяШаблон:Sfn.

Алгоритм работы

Как правило, производители не разглашают алгоритмы обработки сигнала и принятия решения[2]. Один из фактически применяемых алгоритмов, разработанный компанией Siemens, был оглашён в 2007 годуШаблон:Sfn и реализован в линейке УЗДП семейства Siemens 5SM6, вышедшей на рынок в 2012 годуШаблон:Sfn. УЗДП 5SM6 анализируют величину и скорость изменения огибающей на выходе высокочастотного канала в увязке с фазой низкочастотного сигналаШаблон:Sfn. В течение примерно 80 % времени микроконтроллер обрабатывает признаки последовательного пробоя; оставшееся время занимает менее сложная обработка признаков параллельного пробояШаблон:Sfn.

Если и амплитуда, и скорость изменения огибающей высокочастотного сигнала превосходят заданные производителем пороги, то при ближайшем переходе низкочастотного сигнала через ноль программа увеличивает счётчик аварийного состоянияШаблон:Sfn. Если при этом программа распознаёт признаки нормального, не аварийного, искрения (свойственного, например, универсальным коллекторным электродвигателям), счётчик сбрасывается; в противном случае интегрирование ошибки продолжается, и по достижению заданного порога микроконтроллер выдаёт тиристорному ключу команду на отключение нагрузкиШаблон:Sfn. Повторное автоматическое подключение нагрузки после срабатывания защиты запрещено: так же, как и в случае обычного автоматического выключателя, это может сделать только человекШаблон:Sfn.

Главная сложность конструирования УЗДП — выбор и настройка алгоритма, способного надёжно детектировать аварийные, пожароопасные пробои и одновременно не склонного к ложным срабатываниям от неопасных помех. По утверждению Siemens, дифференциальная диагностика дугового пробоя предполагает одновременное выполнение пяти условийШаблон:Sfn:

  • Мощность помехи, регистрируемой высокочастотным каналом БОДП, должна превосходить фоновый уровень как минимум на 15 дБ;
  • Длительность регистрируемой помехи должна составлять не менее 60 % от предельного времени отключения, установленного МЭК 62606Шаблон:Переход;
  • В течение как минимум 95 % этой длительности должна наблюдаться модуляция помехи удвоенной сетевой частотой;
  • В течение как минимум 80 % этой длительности мощность помехи должна быть стабильной;
  • Ток в контролируемой цепи должен составлять не менее 1,5 АШаблон:Sfn.

Процедура сертификации по МЭК 62606 предусматривает испытания УЗДП с семью различными «сложными» нагрузками: электродрелью мощностью 600 Вт, воздушным компрессором с пусковым током 65 А, тиристорным регулятором мощности на 600 Вт и так далее. Исправное УЗДП должно отключать такие нагрузки при последовательном дуговом пробое минимальной мощности (ток испытательной дуги 2,5 А), и не должно отключать их в отсутствии дугиШаблон:Sfn. Стандарт не упоминает о тестировании на совместимость с системами передачи данных по ЛЭП, использующими тот же частотный диапазон, что и высокочастотный канал УЗДПШаблон:Sfn; на практике это также может порождать проблемы. Например, российский разработчик УЗДП «Меандр» предупреждает, что выпускаемые «УЗМ-50МД с версией прошивки до V5 включительно не совместимы с технологией передачи данных по электрической проводке PowerLine (PC-технология Шаблон:Нп5[1].

УЗДП европейского стандарта обязательно комплектуются встроенными средствами контроля (тестирования), запускаемыми вручную либо автоматическиШаблон:SfnШаблон:Sfn. В режиме самотестирования микроконтроллер синтезирует аналоговые сигналы, имитирующие реальные токи дугового пробоя, и подаёт их на входы низкочастотного и высокочастотного каналов аналоговой обработкиШаблон:SfnШаблон:Sfn. Если программа распознаёт «пробой» в заданный срок, испытание считается пройденным. Микроконтроллер зажигает зелёный индикатор («OK»), разъединитель контролируемой цепи остаётся замкнутымШаблон:SfnШаблон:Sfn. Если в заданный срок программа не распознала «пробой», микроконтроллер отключает нагрузку и зажигает индикатор внутренней неисправностиШаблон:SfnШаблон:Sfn. В ручном режиме при нажатии оператором кнопки «тест» микроконтроллер выполняет те же действия, а затем — при любом исходе испытания — отключает нагрузку. Если программа корректно распознала «пробой», то зелёный индикатор загорится только тогда, когда оператор вручную замкнёт разъединитель нагрузкиШаблон:SfnШаблон:Sfn.

Примечания

Шаблон:Примечания

Литература

Шаблон:Нет полных библиографических описаний