Русская Википедия:Ферментный промискуитет

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Ферментный промискуитет (неразборчивость) — это способность фермента катализировать случайную побочную реакцию в дополнение к своей основной реакции. Хотя ферменты являются чрезвычайно специфическими катализаторами, они часто могут выполнять побочные реакции в дополнение к своей основной природной каталитической активности[1]. Побочная активность фермента обычно протекает медленнее по сравнению с основной деятельностью и находится под нейтральным отбором. Несмотря на то, что обычно эти активности физиологически нерелевантны, в условиях нового избирательного давления эти виды деятельности могут принести пользу, тем самым побуждая эволюцию ранее побочных активностей стать новым основным видом деятельности[2]. Примером этого является хлоргидролаза атразина (кодируется atzA) Pseudomonas sр., произошедшая из меламиндезаминазы (кодируется triA), которая имеет очень небольшую побочную активность в отношении атразина, химического вещества, созданного руками человека[3].

Вступление

Ферменты развиваются, чтобы катализировать конкретную реакцию на конкретном субстрате с высокой каталитической эффективностью (kcat/KM, см. также Кинетика Михаэлиса — Ментен). Однако в дополнение к этой основной активности они обладают побочными, активность которых обычно на несколько порядков ниже, и которые не являются результатом эволюционного отбора и, следовательно, не участвуют в физиологии организма. Это явление позволяет ферментам приобретать новые функции, поскольку побочные активности могут принести пользу под новым давлением отбора, ведущим к дублированию гена, кодирующего фермент, и выбору побочной активности в качестве нового основного вида деятельности.

Эволюция ферментов

Дублирование и расхождение

Существует несколько теоретических моделей для предсказания порядка дублирования и смены специализации, но фактический процесс более запутан и нечёток (§ Реконструированные ферменты ниже)[4]. С одной стороны, амплификация гена приводит к увеличению концентрации фермента и потенциальной свободе от ограничительной регуляции, что, следовательно, увеличивает скорость реакции (v) побочной активности фермента, делая его эффекты более выраженными физиологически («эффект дозировки гена»)[5]. С другой стороны, ферменты могут развить повышенную вторичную активность с небольшой потерей первичной активности («устойчивости») с небольшим адаптивным конфликтом (§ Устойчивость и пластичность ниже)[6].

Устойчивость и пластичность

Исследование четырёх различных гидролаз (параоксоназа сыворотки крови человека (PON1), фосфотриэстераза псевдомонад (PTE), протеинтирозинфосфатаза (PTP) и карбоангидраза II человека (CAII)) показало, что основная их активность является «устойчивой» к изменениям, тогда как побочные активности являются «слабыми» и более «пластичными». В частности, выбор побочной активности, (посредством направленной эволюции), изначально не уменьшает основную активность фермента (следовательно, её «устойчивость»), но сильно влияет на побочные виды активности (следовательно, их «пластичность»)[6].

Фосфотриэстераза (PTE) из Pseudomonas diminuta эволюционировала, чтобы стать арилэстеразой (гидролаза P — O в C — O) за восемнадцать циклов, получив 109 сдвигов в специфичности (отношение KM), однако большая часть изменений произошла в начальных циклах, в которых неизбираемая рудиментарная активность PTE сохранялась и развивающаяся активность арилэстеразы росла, в то время как в последних циклах имел место небольшой компромисс за потерю рудиментарной активности PTE в пользу активности арилэстеразы[7].

Это означает, во-первых, что специализированный фермент (монофункциональный) в процессе эволюции проходит через универсальную стадию (многофункциональный), прежде чем снова стать специализированным — предположительно после дупликации гена согласно модели IAD, — и, во-вторых, побочные активности более пластичны, в отличие от основной активности.

Реконструированные ферменты

Самым последним и наиболее ярким примером эволюции ферментов является появление ферментов, способствующих биологическому восстановлению, в течение последних 60 лет. Из-за очень небольшого количества замен аминокислот они представляют собой отличную модель для исследования эволюции ферментов в природе. Однако использование существующих ферментов для определения того, как эволюционировало семейство ферментов, имеет недостаток, заключающийся в том, что недавно возникший фермент сравнивают с паралогами, не зная истинной идентичности предка до того, как два гена расходятся. Эта проблема может быть решена благодаря реконструкции предков. Впервые предложенная в 1963 году Линусом Полингом и Эмилем Цукеркандлом, предковая реконструкция — это вывод и синтез гена из предковой формы группы генов[8] который недавно возродился благодаря усовершенствованным методам вывода[9] и недорогому искусственному синтезу генов[10] в результате которого необходимо изучать несколько наследственных ферментов, которые некоторые называют «стемзимами»[11][12].

Доказательства, полученные с помощью реконструированного фермента, предполагают, что порядок событий, когда новая активность улучшается, а ген дублируется, не является четким, в отличие от того, что предполагают теоретические модели эволюции генов.

Одно исследование показало, что предковый ген семейства протеаз иммунной защиты у млекопитающих имел более широкую специфичность и более высокую каталитическую эффективность, чем современное семейство паралогов[11] тогда как другое исследование показало, что предковый стероидный рецептор позвоночных был рецептором эстрогена с небольшой неоднозначностью субстрата для других гормонов, что указывает на то, что они, вероятно, не были синтезированы в то время[13].

Эта вариабельность наследственной специфичности наблюдалась не только между разными генами, но и внутри одного и того же семейства генов. В свете большого количества паралогичных генов α-глюкозидазы грибов с рядом специфических мальтозоподобных (мальтоза, тураноза, мальтотриоза, мальтулоза и сахароза) и изомальтозоподобных (изомальтоза и палатиноза) субстратов, исследование реконструировало всех ключевых предков и обнаружили, что последний общий предок паралогов был в основном активен на мальтозоподобных субстратах с лишь следовой активностью для изомальтозоподобных сахаров, несмотря на то, что он привел к линии изомальтозоглюкозидаз и линии, которая далее расщеплялась на мальтозоглюкозидазы и изомальтозоглюкозидазы. В противоположность этому, предок до последнего расщепления имел более выраженную изомальтозоподобную активность глюкозидазы[4].

Изначальный метаболизм

Рой Дженсен в 1976 году предположил, что первичные ферменты должны быть очень неразборчивыми, чтобы метаболические сети собирались лоскутным способом (отсюда и его название, лоскутная модель). Эта изначальная каталитическая универсальность позже была утрачена в пользу высококаталитических специализированных ортологичных ферментов.[14] Как следствие, многие ферменты центрального метаболизма имеют структурные гомологи, которые расходились до появления последнего универсального общего предка[15].

Распределение

Промискуитет — это не только изначальная черта, но и очень распространенное свойство в современных геномах. Был проведен ряд экспериментов для оценки распределения активности промискуитетных ферментов в E. coli . В E. coli 21 из 104 протестированных единичных генов (из коллекции Keio[16]) можно было устранить за счет сверхэкспрессии некогнатного белка E. coli (с использованием объединённого набора плазмид из коллекции ASKA[17]). Механизмы, с помощью которых некогнатная ORF может восстановить нокаут, можно сгруппировать в восемь категорий: избыточная экспрессия изоферментов (гомологи), неоднозначность субстрата, транспортная неоднозначность (очистка), каталитическая неразборчивость, поддержание метаболического потока (включая сверхэкспрессию большого компонента синтазы в отсутствие субъединицы аминотрансферазы), обход пути, регуляторные эффекты и неизвестные механизмы[5]. Точно так же сверхэкспрессия коллекции ORF позволила E. coli повысить устойчивость более чем на порядок в 86 из 237 токсичных сред[18].

Гомология

Известно, что гомологи иногда проявляют неразборчивость по отношению к основным реакциям друг друга[19]. Эта перекрестная неразборчивость наиболее изучена с членами суперсемейства щелочных фосфатаз, которые катализируют гидролитическую реакцию по сульфатной, фосфонатной, монофосфатной, дифосфатной или трифосфатной сложноэфирной связи нескольких соединений[20]. Несмотря на расхождение, гомологи обладают разной степенью взаимной неразборчивости: различия в неразборчивости связаны с задействованными механизмами, особенно с необходимым промежуточным звеном[20].

Степень неразборчивости

Ферменты, как правило, находятся в состоянии, которое является не только компромиссом между стабильностью и каталитической эффективностью, но это также верно и в отношении специфичности и эволюционируемости, причем последние два определяют, является ли фермент универсальным (высокоразвитым из-за большой неразборчивости, но низкой основной активностью) или специальным (высокая основная активность, плохо развивающаяся из-за высокой разборчивости)[21]. Примерами являются ферменты для первичного и вторичного метаболизма в растениях (§ Вторичный метаболизм растений ниже). В игру могут вступать и другие факторы, например, глицерофосфодиэстераза (gpdQ) из Enterobacter aerogenes показывает разные значения своей неразборчивой активности в зависимости от двух ионов металлов, которые она связывает, что продиктовано доступностью ионов[22].v В некоторых случаях неразборчивость можно увеличить, ослабив специфичность активного сайта путем увеличения его с помощью одной мутации, как это было в случае мутанта D297G эпимеразы L-Ala-D / L-Glu E. coli (ycjG) и E323G мутант лактонизирующего фермента II псевдомонад муконат, что позволяет им беспорядочно катализировать активность O-сукцинилбензоатсинтазы (menC)[23]. Напротив, неразборчивость может быть уменьшена, как это было в случае γ-гумуленсинтазы (сесквитерпенсинтазы) из Abies grandis, которая, как известно, продуцирует 52 различных сесквитерпена из фарнезилдифосфата после нескольких мутаций[24].

Исследования ферментов с широкой специфичностью — не беспорядочных, но концептуально близких — таких как трипсин и химотрипсин млекопитающих и бифункциональная изопропилмалат-изомераза / гомоаконитаза из Pyrococcus horikoshii, показали, что подвижность петли активного центра в значительной степени способствует каталитической эластичности фермента[25][26].

Токсичность

Промискуитетная активность — это ненативная активность, для которой фермент не эволюционировал, возникающая из-за аккомодационной конформации активного сайта. Однако основная активность фермента является результатом не только отбора в сторону высокой каталитической скорости по отношению к конкретному субстрату для получения конкретного продукта, но также и во избежание образования токсичных или ненужных продуктов[2]. Например, если синтез тРНК загружает неправильную аминокислоту в тРНК, полученный пептид будет иметь неожиданно изменённые свойства, следовательно, для повышения точности присутствуют несколько дополнительных доменов[27]. Подобно реакции синтеза тРНК, первая субъединица тироцидинсинтетазы (tyrA) из Bacillus brevis аденилирует молекулу фенилаланина, чтобы использовать аденильный фрагмент в качестве рычага для получения тирокидина, циклического нерибосомного пептида. Когда была исследована специфичность фермента, было обнаружено, что он обладает высокой селективностью в отношении природных аминокислот, которые не являются фенилаланином, но гораздо более толерантен к неприродным аминокислотам[28]. В частности, большинство аминокислот не катализировалось, тогда как следующей наиболее катализированной нативной аминокислотой был тирозин по структуре, но в тысячную долю больше, чем фенилаланин, тогда как несколько некодируемых аминокислот катализировались лучше, чем тирозин, а именно D-фенилаланин, β- циклогексил-L-аланин, 4-амино-L-фенилаланин и L-норлейцин[28].

Одним из специфических случаев выбранной вторичной активности являются полимеразы и эндонуклеазы рестрикции, где неправильная активность фактически является результатом компромисса между точностью и эволюционируемостью. Например, для рестрикционных эндонуклеаз неправильная активность (звездчатая активность) часто приводит к летальному исходу для организма, но небольшое количество данной активности позволяет развиваться новым функциям для противодействия патогенам[29].

Вторичный метаболизм растений

Файл:Delphinidin.svg
Антоцианы (на фото дельфинидин) содержатся в растениях, особенно в их цветах, придают им разнообразную окраску для привлечения опылителей и являются типичным примером вторичного метаболита растений.

Растения производят большое количество вторичных метаболитов благодаря ферментам, которые, в отличие от тех, которые участвуют в первичном метаболизме, менее каталитически эффективны, но обладают большей механической эластичностью (типы реакций) и более широкой специфичностью. Порог либерального дрейфа (вызванный низким давлением отбора из-за небольшого размера популяции) позволяет приросту физической формы, обеспечиваемому одним из продуктов, поддерживать другие виды деятельности, даже если они могут быть физиологически бесполезными[30].

Биокатализ

В биокатализе занимаются поиском множества реакций, отсутствующих в природе. Для этого ферменты с небольшой беспорядочной активностью по отношению к требуемой реакции идентифицируются и развиваются посредством направленной эволюции или рационального дизайна[31].

Примером широко развивающегося фермента является ω-трансаминаза, которая может заменять кетон хиральным амином[32] и, следовательно, библиотеки различных гомологов коммерчески доступны для быстрой биодобычи (например, Codexis).

Другой пример — возможность использования беспорядочной активности цистеинсинтазы (cysM) по отношению к нуклеофилам для получения непротеиногенных аминокислот[33].

Сходство реакции

Сходство между ферментативными реакциями (ЕС) можно рассчитать, используя изменения связей, реакционные центры или показатели субструктуры (EC-BLAST)[34].

Лекарства и промискуитет

В то время как промискуитет в основном изучается с точки зрения стандартной кинетики ферментов, связывание лекарств и их последующая реакция представляют собой беспорядочную активность, поскольку фермент катализирует реакцию инактивации по отношению к новому субстрату, для которого он не эволюционировал, чтобы катализировать[6]. Это может быть связано с тем, что в белках имеется лишь небольшое количество отдельных участков связывания лигандов.

С другой стороны, метаболизм ксенобиотиков млекопитающих был разработан так, чтобы обладать широкой специфичностью для окисления, связывания и удаления чужеродных липофильных соединений, которые могут быть токсичными, таких как алкалоиды растений, поэтому их способность детоксифицировать антропогенные ксенобиотики является продолжением этого[35].

См. также

Примечания

Шаблон:ПримечанияШаблон:Ферменты