Русская Википедия:Формула Резерфорда

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Фо́рмула Резерфóрда — формула для дифференциального эффективного поперечного сечения рассеяния нерелятивистских заряженных частиц в телесный угол Шаблон:Math в кулоновском поле другой неподвижной заряженной частицы или ядра (мишени). Подтверждена эмпирически Э. Резерфордом в 1911 году в опытах по рассеянию α-частиц на тонкой золотой фольге субмикронной толщины. В системе центра инерции налетающей и рассеивающей частиц дифференциальное сечение рассеяния записывается следующим образом:

<math> \frac{d\sigma}{d\Omega} = \left(\frac{Z_1 Z_2 e^2}{2mv^2}\right)^2 \frac{1}{\sin^{4}{\frac{\Theta}{2}}} </math>

где <math> Z_1 </math> и <math> Z_2 </math> — заряды налетающей частицы и мишени, <math> m, v </math> — масса и скорость налетающей частицы, <math> \Theta </math> — двумерный угол рассеяния, <math> e </math> — элементарный заряд, <math> d\sigma </math> — дифференциал полного сечения, <math> \Omega </math> — дифференциал телесного угла.

Рассеяние Резерфорда

В физике рассеянием Резерфорда называется феномен, описанный Эрнестом Резерфордом в 1909 году[1], и приведший к развитию планетарной модели Бора-Резерфорда. Рассеяние Резерфорда также называют кулоновским рассеянием, потому что оно базируется исключительно на силах электростатического взаимодействия, и минимальное расстояние между частицами зависит только от потенциала поля. Классическое рассеяние Резерфорда представляет собой рассеяние α-частиц на ядрах атомов золота (бомбардировка золотой пластинки α-частицами), что является примером так называемого «упругого рассеяния», так как энергия и скорость рассеянной частицы такая же, как и у налетающей.

Также Резерфорд анализировал неупругое рассеяние α-частиц на протонах (ядрах атома водорода), этот процесс не является классическим рассеянием Резерфорда, хотя наблюдался им ранее, чем классический. При приближении α-частицы к протону возникают некулоновские силы, которые вместе с энергией налетающей частицы на лёгкую мишень меняют результаты эксперимента. Эти эффекты позволяют строить предположения о внутренней структуре мишени. Похожий процесс был применён в 1960-х для исследования внутренней структуры ядра под названием глубоко неупругое рассеяние.

Первоначальное открытие было сделано Хансом Гейгером и Эрнестом Марсденом в 1909 году — эксперимент Гейгера — Марсдена — под руководством Резерфорда, в котором они бомбардировали α-частицами мишень, состоящую из нескольких сверхтонких (толщиной менее одного микрона) слоёв золотой фольги. Во время эксперимента предполагалось, что атом является аналогией пудинга с изюмом (согласно томсоновской модели атома), где отрицательные заряды (изюм) распределены по положительно заряженному шару (пудинг). Если томсоновская модель атома верна, то положительно заряженный пудинг будет более протяжённым, чем ядро атома в модели Бора — Резерфорда, и не сможет создавать большие силы кулоновского отталкивания, вследствие чего α-частицы будут отклоняться на малые углы от своего первоначального вектора скорости.

Однако эксперимент показал, что 1 из 8000 частиц отражается на углы более 90°, когда основная масса частиц проходит через фольгу с небольшим отклонением или вообще без него. Исходя из этого Резерфорд заключил, что основная масса и заряд вещества заключена в крошечном положительно заряженном пространстве (ядре) окруженном электронами. Когда положительная α-частица пролетает очень близко от ядра, то испытывает на себе силы кулоновского отталкивания и отражается на большие углы. Маленький размер ядра атома объясняется малым количеством α-частиц отражённых подобным образом. Используя описанный метод, Резерфорд показал, что размер ядер меньше чем <math>10^{-14}</math>м (насколько «меньше» Резерфорд не мог уточнить опираясь только на этот эксперимент).

Дифференциальное сечение

Файл:ScatteringDiagram.svg
Отталкивающее рассеяние на точечной заряженной частице.

Установленная Резерфордом в 1911 году формула дифференциального сечения:

<math>\frac{d \sigma}{d \Omega} = \left(\frac{\alpha \hbar c}{2mv_0^2} \right)^2 \frac{1}{\sin^4 (\theta / 2)}. </math>

Все частицы проходящие через кольцо слева попадают в кольцо справа.

Подробнее о вычислении максимального размера ядра

При столкновении α-частицы с ядром, вся кинетическая энергия <math>\left(\frac{mv^2}{2}\right)</math> α-частицы превращается в потенциальную энергию, вследствие чего частица останавливается. В этот момент расстояние от α-частицы до центра ядра (Шаблон:Math) является максимально возможным радиусом самого ядра. Это очевидно из эксперимента: если радиус сферического ядра превысит Шаблон:Math, то частица не сможет провзаимодействовать с ним как с точечным зарядом посредством лишь кулоновских сил.

Приравнивая кинетическую энергию частицы к потенциалу электрического поля: Шаблон:Hider

<math>\frac{mv^2}{2} = \frac{1}{4\pi \epsilon_0} \cdot \frac{q_1 q_2}{b} \Rightarrow b = \frac{1}{4\pi \epsilon_0} \cdot \frac{2 q_1 q_2}{mv^2}</math>.

В эксперименте Гейгера — Марсдена:

Подставляя эти значения в полученное уравнение для максимального радиуса ядра, получаем ≈ 27 фм (1 фемтометр = 10−15 метра). При этом радиус, измеренный современными методами, составляет ≈ 7,3 фм. Более точно радиус ядра атома золота в этом эксперименте было получить невозможно, так как энергии α-частицы в нём хватало - только чтобы приблизиться к ядру на 27 фм, тогда как для столкновения требовалось подойти на 7,3 фм.

Другие применения

На данный момент принцип рассеяния широко используется в спектроскопах обратного рассеяния чтобы определять тяжёлые элементы в решётках более лёгких атомов, например, чтобы найти вкрапления тяжёлых металлов в полупроводники. Известно, что данная технология была впервые использована на Луне для анализа почвы аппаратом «Surveyor 4», а позже аналогичные анализы проводили аппараты «Surveyor 5-7».

Примечания

Шаблон:Примечания

Литература

Ссылки

  1. E. Rutherford, «The Scattering of α and β Particles by Matter and the Structure of the Atom»,Philos. Mag., vol 6, pp.21, 1909