Русская Википедия:Функциональный тип

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Не путать

Функциональный тип (стрелочный тип, экспоненциал) в информатике — тип переменной или параметра, значением которой или которого может быть функция; либо тип аргумента или возвращаемого значения функции высшего порядка, принимающей или возвращающей функцию.

Функциональный тип зависит от типов параметров и типа результата функции. Другими словами, это тип высшего рода, или, более точно, неприменённый конструктор типов «<math>\cdot \to \cdot</math>». В теоретических моделях и языках с поддержкой каррирования, например в просто типизированном лямбда-исчислении, функциональный тип зависит ровно от двух типов: области определения <math>A</math> и области значений <math>B</math>. В этом случае функциональный тип, следуя математической традиции, обычно записывают как <math>A \to B</math> (в практических языках программирования — A -> B), или как <math>B^A</math>, подразумевая, что существует ровно <math>|B|^{|A|}</math> Шаблон:Iw, отображающих <math>A</math> на <math>B</math>. С точки зрения соответствия Карри — Ховарда обитаемость функционального типа <math>A \to B</math> эквивалентна доказуемости логической импликации <math>A \Rightarrow B</math>.

Функциональный тип можно рассматривать как частный случай зависимого произведения типов. Среди прочих свойств, такое представление несёт в себе идею полиморфной функции.

Языки программирования

В следующую таблицу сведён синтаксис, используемый в различных языках программирования для функциональных типов, а также соответствующие примеры сигнатуры типа для функции композиции функций.

Язык программирования Нотация Пример Шаблон:Iw
С поддержкой первоклассных функций,
параметрического полиморфизма
C++11 std::function<ρ (α1,α2,...,αn)> function<function<int(int)>(function<int(int)>, function<int(int)>)> compose;
C# Func<α1,α2,...,αn,ρ> Func<A,C> compose(Func<A,B> f, Func<B,C> g);
Go func(α1,α2,...,αn) ρ var compose func(func(int)int, func(int)int) func(int)int
Haskell α -> ρ compose :: (a -> b) -> (b -> c) -> a -> c
Objective-C/C/C++ с блоками ρ (^)(α1,α2,...,αn) int (^compose(int (^f)(int), int (^g)(int)))(int);
OCaml α -> ρ compose : ('a -> 'b) -> ('b -> 'c) -> 'a -> 'c
Scala (α1,α2,...,αn) => ρ def compose[A, B, C](f: B => C, g: A => B): A => C
Standard ML α -> ρ compose : ('a -> 'b) -> ('b -> 'c) -> 'a -> 'c
Без первоклассных функций,
параметрического полиморфизма
Си ρ (*)(α1,α2,...,αn) int (*compose(int (*f)(int), int (*g)(int)))(int);

Следует обратить внимание, что в примере на C# функция compose имеет тип «Func< Func<A,B>, Func<B,C>, Func<A,C> >».

Денотационная семантика

Функциональный тип в языках программирования не соответствует пространству всех теоретико-множественных функций. Если принять счётно бесконечный тип натуральных чисел в качестве области определения и тип булевых чисел в качестве области значений, то существует несчётное количество (<math>2^{\aleph_0} = \mathfrak{c}</math> — мощность континуума) теоретико-множественных функций между ними. Очевидно, это множество функций заведомо шире множества функций, определимых в языках программирования, так как существует лишь счётное множество программ (где программа представляет собой конечную цепочку из символов конечного набора).

Денотационная семантика занимается поиском более подходящих моделей (называемых Шаблон:Iw), в том числе, для моделирования таких понятий языков программирования как функциональный тип. В денотационной семантике считается, что целесообразно не ограничиваться лишь вычислимыми функциями, а использовать любые непрерывные по Скотту функции на частично упорядоченных множествах, которыми возможно смоделировать также и Шаблон:Iw (а таковые возникают во всяком полном по Тьюрингу языке). Средства теории областей, используемые в денотационной семантике, достаточно выразительны, например, непрерывной по Скотту функцией моделируется «parallel or», определимый далеко не во всех языках программирования.

См. также

Ссылки

Шаблон:Rq

Шаблон:Типы данных