Русская Википедия:Химическая номенклатура
Хими́ческая номенклату́ра — совокупность химических терминов и названий индивидуальных химических веществ, их групп и классов, а также правила составления этих названий.Шаблон:Sfn
История
Система наименований химических соединений длительное время развивалась хаотично, наименования давались в основном первооткрывателями каких-либо соединений. Многие вещества известны настолько давно, что происхождение их наименований носит легендарный характер. Исторически сложившиеся «собственные имена» выделяют как тривиальные названия. Они не вытекают из каких-либо единых систематических принципов, не выражают строения соединения и чрезвычайно разнообразны. Например: рудничный газ, винный спирт, ванилин, сода.
Создание систематической номенклатуры
Химическая номенклатура, как система единых принципов для создания общепринятой терминологии и названий веществ (систематическая номенклатура), берет свое начало с работы Гитон де Морво, который в 1782 году предложил в противовес спорадическому присвоению названий химических веществ подход, согласно которому простейшим химическим веществам следует присвоить простые химические названия, из которых далее возможно составляться названия соединений более сложного состава[1][2]. Гитон де Морво опубликовал первую таблицу химической номенклатуры (Tableau de Nomenclature Chimique), включавшую шесть минеральных кислот, шесть кислот растительного и четыре животного происхождения, а также три щелочи и предложил на их основе метод наименования около пятиста соединений[3]. В 1787 г шесть французских химиков — Гитон де Морво, Лавуазье, Бертолле, Фуркруа, Хассенфратц и Аде, — опубликовали первую общепринятую систематическую химическую номенклатуру (Méthode de nomenclature chimique), получившую далее известность как номенклатура Лавуазье[4][5]. Наряду с правилами наименования веществ, в ней было предложено использовать комбинацию букв и геометрических фигур в качестве символов для обозначения химических веществ и отдельных групп (например, квадрат с буквой F обозначал железо, а круг с буквой F обозначал фторид-ион)[6]−347[2]−245, что явилось прообразом химических формул.
В 1801 году В. М. Севергин принимает новую химическую номенклатуру Лавуазье, переводит и вводит русскоязычные химические термины.[7] Например, он впервые назвал: «кислотворное вещество» (кратко «кислотвор», совр. кислород), водотворное — водород, удушливое — (азот), угольное — углерод. Оксиды металлов назвал — «земли». Дал химическое обозначение солям. В дальнейшем он переводил[8] и составлял химические словари[9], что способствовало закреплению его химической номенклатуры. Развернутое описание химической номенклатуры на русском языке было дано Г. Гессом в 1831 году[10].
В 1803—1810 годах Дальтон предложил альтернативный номенклатуре Лавуазье подход для краткой записи химических соединений, в котором элементы отображались в виде кругов, символизировавшие атомы, с особыми символами или буквами для каждого химического элемента. Достоинством такого подхода являлась возможность изображать структуры молекул в виде комбинации атомов, что явилось прототипом современных структурных формул. Основной недостаток, как и для символических обозначений в номенклатуре Лавуазье, состоял в трудности использования таких обозначений в печатных изданиях[11][2]−256.
В 1813—1814 годах Берцелиус ввёл термин формула для используемого и в настоящее время способа краткой записи соединений, в которой буквенными символами и числами отражается их элементный состав. Каждому химическому элементу соответствовало буквенное обозначение (символ), которое являлось сокращением от его названия на латинском языке и состояло из заглавной буквы или комбинации заглавной и строчной букв латинского алфавита. Формулы Берцелиуса состояли из символов элементов и числовых индексов, отражающих соотношение элементов в соединении[12]−359[6]−348. Берцелиус таже предложил использовать предложенные им формулы химических веществ при записи уравнений химических реакций[13]−52. Основная критика формул Берцелиуса, в частности, со стороны Дальтона, состояла в невозможности их использования для отражения последовательности соединения атомов в молекулах[14]. К середине XIX века сформировалась традиция ставить в соответствие названию химического соединения его буквенно-числовую формулу. Созданная Берцелиусом электрохимическая теория, согласно которой соединения образуются в результате взаимодействия «электроположительных» и «электроотрицательных» элементов, стала прочной основой для выработавшей к этому времени номенклатуры неорганических соединений и предшественником бинарной номенклатуры, используемой в настоящее время в неорганической химии.
Этапы развития систематической номенклатуры органических веществ
В конце XVII-начале XIX века химикам удалось выделить из растений и животных большую группу соединений, названных органическими веществами. Однако их ограниченный элементный состав (углерод, водород, а также кислород и, реже, азот и фосфор), отсутствие данных о структуре молекул, а также трудности в установлении количественного состава органических соединений не позволяли использовать для конструирования их названий систематические подходы, достаточно успешно применяемые в то время для неорганических веществ. Поэтому до середины XIX века для органических веществ использовались лишь тривиальные названия по источнику их происхождения (муравьиная, винная, лимонная кислоты), первооткрывателю (кетон Михлера, основание Трёгера), а также являющиеся сокращениями слов и других названий (альдегид — Alcohol dehydrohenatus или ацеталь — продукт реакции ацетона и спирта (alcohol)).
Систематическая номенклатура органических соединений в полной мере возникла после разработки научных основ органической химии, сформированной в 1861 году Бутлеровым в виде теории строения молекул органических веществ, согласно которой идентичность органических соединений определяется не только элементным составом молекул, но и порядком соединения в них атомов и их пространственным расположением.
Можно выделить четыре основных этапа развития систематической номенклатуры:
- Рациональная (радикально-функциональная) номенклатура создана в середине XIX века под влиянием теории радикалов Берцелиуса и более поздней теории типов Дюма и Лорана. Следствием теории типов и последующего открытия гомологии и изомерии стала возможность объединять вещества с близкими свойствами в одну группу (спирты, кетоны, карбоновые кислоты), используя при их наименовании название самого простого представителя (метан, фенол, нафталин, муравьиная кислота и др) в качестве основы, к которой в качестве приставок добавлялись названия радикалов, замещавшие водород; так, этан в рациональной номенклатуре имел название метилметан. Использовали и другие основы названий, не связанные с конкретными соединениями (кетон, карбинол), например, диметилкетон для ацетона, метилэтилкарбинол для бутан-2-ола[2]−299. Последние значимые уточнения в рациональную номенклатуру вносились в 1879 году Лондонским Химическим обществом.[15]−276 В настоящее время рациональная номенклатура широкого распространения не имеет, но отдельные ее положения нашли отражение в современной заместительной номенклатуре.
- Женевская номенклатураШаблон:Sfn. 19—22 апреля 1892 на Женевском конгрессе[16][17] Международной комиссии для реформы химической номенклатуры были приняты правила номенклатуры, называемой Женевской. Это были первые научно-обоснованные и хорошо систематизированные правила для органических веществ, основанные на данных о структуре и составе соединений. Появляется термин «систематическая номенклатура», в которой каждому названию может быть сопоставлена соответствующая структурная формула соединения. В основу легли принципы заместительной номенклатуры, в которой молекулы соединений рассматриваются как продукты замещения атомов водорода в молекулах углеводородов на различные другие атомы, заместители или функциональные группы, при этом, основу названий стали составлять названия соответствующих углеводородов. Например, диметилэтилметан получил название 2-метилбутан. Появились первые правила выбора главной углеродной цепи и боковых цепей при построении названий, обозначение и нумерация кратных связей. Названия многих функциональных групп стали отражаться в суффиксе (пропанон для ацетона, этановая кислота для уксусной кислоты), при этом понятие главной функциональной группы при выборе основной цепи ещё отсутствовало (например, для бензилового спирта использовалось название бензол-этилол). Женевская номенклатура составила основу номенклатурных правил органической химии разрабатываемых далее при участии ИЮПАК.
- Льежская номенклатура.Шаблон:Sfn[18]. В 1930 ИЮПАК по результатам конференции в Льеже принял новые правила наименования органических соединений, которые были близки к Женевской номенклатуре, но уточняли ряд ее положений, в частности,
- химическая номенклатура фокусировалась на соединениях известного строения;
- точная форма терминов, окончаний и др. составляющих названий должна была быть приведена в соответствие с особенностями каждого национального языка;
- введено понятие главной функциональной группы в соединении, с которой должна быть обязательно соединена главная углеродная цепь молекулы, функциональные группы ранжированы по старшинству для возможности выбора одной главной группы;
- рассмотрение названий белков, витаминов и гормонов переведено в биохимическую номенклатуру.Шаблон:Переход
- Последующие версии номенклатуры ИЮПАК. Разнообразие номенклатурных систем для новых органических соединений и возникающие из-за этого сложности в научной и практической деятельности привели к тому, что в 1947 году на совещании ИЮПАК в Лондоне было принято решение о выработке новых международных правил номенклатуры, которые были созданы в 1957 году и опубликованы под названием Правила номенклатуры органических соединений IUPAC 1957[19]. Впоследствии они составили регулярно обновляемый свод номенклатурных правил ИЮПАК по органической химии, известный как Синяя книга.[20][21]
Совершенствование номенклатуры неорганических и координационных соединений
Существенным дополнением к бинарной номенклатуре неорганических соединений, созданной при участии Лавуазье и Берцелиуса, стала аддитивная номенклатура, предложенная Вернером для координационных соединений[22][23]. В аддитивной номенклатуре названия лигандов следовали за названием центрального атома, к которому добавлялось окончание -ат, если комплексная часть координационного соединения была анионом. Вернер тажке предложил использовать мультипликативные приставки (ди-, три- итд) для указания количества лиандов. Например, тетрацианоникелат(0) калия для K4[Ni(CN)4] или хлорид трис(этилендиамин)кобальта (III) для [Co(NH2CH2CH2NH2)3]Cl3.
Дальнейшая работа по совершенствованию номенклатуры неорганических соединений проводилось под эгидой ИЮПАК, в частности, в 1940 году вышли первые общепринятые Правила наименования неорганических веществ, которые регламентировали построения названий бинарных соединений и веществ, составленных из более двух элементов, номенклатуру кислородсодержащих кислот и их анионов (в том числе мета-, пиро- и поликислот), солей и их кристаллогидратов, координационных соединений[24]. Последующие редации этого документа составили свод номенклатурных правил ИЮПАК по неорганической химии, названный Красная книга.[25]
Создание номенклатуры полимеров
Впервые упорядоченные номенклатурные правила в области химии полимеров (высокомолекулярных соединений) были разработаны ИЮПАК в 1952 году[26][27]. Наряду с общей терминологией и принципами наименования полимерных молекул они включали определения понятий молекулярной массы полимеров, осмотического давления и вязкости их растворов, номенклатуру полисахаридов, определения основных типов реакций полимеризации и их кинетических аспектов. Первые систематические названия линейных органических полимеров, не получившие впоследствие широкого распространения, состояли из приставки поли-, названия простейшего структурно-повторяющегося фрагмента и суффикса -амер (например, полиметамер для полиэтилена). Далее эта номенклатура была дополнена описанием пространственной структуры для случая регулярных полимеров[28].
В 1975 году[29] номенклатура была существенно пересмотрена и стали допустимыми два подхода для наименования полимеров на основе:
- названий синтетического предшественника — исходного мономера или его условного аналога (например, полиэтилен),
- названий структурно повторяющегося фрагмента (поли(метилен)),
причём, в обоих случаях для названий основы использовалась заместительная номенклатура ИЮПАК для органической химииШаблон:Переход. Эти походы используются в современной номенклатуре высокомолекулярных соединений[30], составляющей Фиолетовую книгу ИЮПАК[31], в которой также классифицированы структурные типы полимеров и приведены способы построения их структурных формул и перечень общеупотребимых аббревиатур.
Создание биохимической номенклатуры
В период с 1921 до 1954 года разработкой номенклатуры в области биологической химии занималась отдельная комиссия ИЮПАК. За это время в сотрудничестве с комиссией ИЮПАК по номенклатуре органической химии ею были созданы единые правила для наименования углеводов, аминокислот и пептидов, жиров, ферментов, каротеноидов и витаминов[32]. Выделение биохимии в отдельную от химии и родственную молекулярной биологии область науки привело к созданию в 1955 году самостоятельного Международного союза биохимии (International Union of Biochemistry, IUB), позднее ставшего Международным союзом биохимии и молекулярной биологии (International Union of Biochemistry and Molecular Biology, IUBMB), который создал собственную комиссию по номенклатуре[33][34][35]. С этого времени ИЮПАК и IUB(MB) ведут совместную работу по совершенствованию биохимической номенклатуры в рамках объединенной комиссии (до 1977 года — Commission of Biochemical Nomenclature, CNB, далее — Joint Commission on Biochemical Nomenclature, JCNB), при этом вопросы номенклатуры, не затрагивающие напрямую интересы химиков, рассматриваются отдельной номенклатурной комиссией IUBMB (Nomenclature Committee of IUBMB, NC-IUBMB)[35][36][37]−159. В 1992 году ИЮПАК и IUBMB выпустили актуальный в то время сборник статей по биохимической номенклатуре, названный Белая книга[38]. Номенклатурные правила по биохимии традиционно выпускаются в виде отдельных статей для каждого класса природных соединений и публикуются в изданиях ИЮПАК[39] и IUBMB[40], а также размещаются на сайте JCNB.
Изначально предполагалось, что для наименования веществ биологического происхождения известного состава и строения будет применяться заместительная номенклатура органических веществ, однако, для биохимического сообщества более приемлемым оказался подход, основанный на принципах рациональной номенклатурыШаблон:Переход с использованием большого количества тривиальных основ (например, гидрокси-4-L-пролин, деоксирибоза), а для природных соединений более сложного строения (например, ферменты) структурный подход оказался полностью неприменим. Далее основным принципом биохимической номенклатуры стало создании не систематических, а скорее согласованных (coherent) названий и последовательных подходов к их построению[32]−86, при этом названия биохимических молекул выстраиваются на основе одного или более критериев, приведенных ниже[37]−160:
- источник для выделения (организм, органелла);
- функции в живых организмах;
- структурные особенности;
- в виде производного от другого родственного соединения, названного по вышеуказанным критериям;
- порядковые или каталожные номера.
Современное состояние
Номенклатура ИЮПАК — действующий мировой стандарт
Шаблон:MainНаличие устоявшейся общепризнанной на мировом уровне и активно используемой химической номенклатуры является результатом активной и скрупулезной работы ИЮПАК в течение всей столетней истории[41] существования этого химического общества, сумевшего консолидировать усилия химиков всего мира для выработки единых принципов[42] наименования химических веществ и химической терминологии. На сегодняшний день именно номенклатура ИЮПАК является стандартным средством коммуникации в большинстве научных и промышленных областей химии.
Современная химическая номенклатура ИЮПАК содержит сведения по трем основным направлениям:
- Химическая терминология и единицы измерения[31][43][44][45][46];
- Правила наименования химических веществ и химических элементов[21][25][31][38], универсальные идентификаторы для химических веществ (InChI)[47][48];
- Методологические основы теоретической и экспериментальной химии для различных ее областей (аналитическая химия[45], физическая химия[44], клиническая биохимия[46]).
Совершенствуя химическую номенклатуру по междисциплинарным областям химии, ИЮПАК тесно взаимодействует с другими мировыми научными организациями, например, Международным союзом биохимии и молекулярной биологии в случае биохимической номенклатуры[49] или Международной федерацией клинической химии и лабораторной медицины для развития раздела химической номенклатуры для применения в клинической биохимии.[50]
Успешность создания химической номенклатуры, общепринятой в мировом масштабе, зачастую, определяется возможностью нахождения компромиссов в случае неоднозначных вопросов. В номенклатуре ИЮПАК яркими примерами таких компромиссных решений являются:
- Отказ от доминирующей роли английского языка – применение номенклатуры вне англоговорящих стран учитывает нормы и правила национальных языков, что создает определённые трудности в переводе названий и терминов с одного языка на другой, но позволяет делать их лексически и фонетически более гармоничными.
- Соглашение о возможности использования устойчивых тривиальных (не относящихся к систематической или полусистематической номенклатуре) названий для ряда широко известных веществ.
- Решение ИЮПАК о названиях ряда тяжелых трансурановых химических элементов в 2016 году с учетом приоритетов различных стран в их синтезе[51] .
Тривиальные названия соединений
Тривиальные названия — названия, исторически закрепившиеся за какими-либо соединениями, и не соответствующие никакой номенклатуре.
См. также
Примечания
Литература
- ↑ Шаблон:Статья
- ↑ 2,0 2,1 2,2 2,3 Шаблон:Книга
- ↑ Шаблон:Статья
- ↑ Шаблон:Книга
- ↑ Шаблон:Статья
- ↑ 6,0 6,1 Шаблон:Статья
- ↑ Севергин В. М. Пробирное искусство, или руководство к химическому испытанию металлических руд и других ископаемых тел. СПб.: ИАН, 1801. XVI, [15], 370 c.
- ↑ Шаблон:Книга
- ↑ Севергин В. М. Руководство к удобнейшему разумению химических книг иностранных, заключающее в себе словари: латинско-российский, французско-российский и немецко-российский, по старинному и новейшему словознанию. СПб.: тип. ИАН, 1815. V, 291, 4 с.
- ↑ Шаблон:Книга
- ↑ Шаблон:Книга
- ↑ Шаблон:Статья
- ↑ Шаблон:Статья
- ↑ В более поздних вариантах записи формул, чтобы отразить связность атомов в соединениях, Берцелиус предлагал использовать точки для обозначения атомов кислорода и запятые для обозначений атомов серы над символами элементов, с которыми они были соединены, однако эти подходы для записи формул не получили распространение.
- ↑ Шаблон:Статья
- ↑ Шаблон:Статья
- ↑ Шаблон:Citation.
- ↑ Шаблон:Статья
- ↑ Шаблон:Статья
- ↑ Шаблон:Книга
- ↑ 21,0 21,1 Шаблон:Книга
- ↑ Шаблон:Книга
- ↑ Шаблон:Статья
- ↑ Шаблон:Статья
- ↑ 25,0 25,1 Шаблон:Книга
- ↑ Шаблон:Статья
- ↑ Шаблон:Cite web
- ↑ Шаблон:Статья
- ↑ Шаблон:Статья
- ↑ Шаблон:Статья
- ↑ 31,0 31,1 31,2 Шаблон:Книга
- ↑ 32,0 32,1 Шаблон:Статья
- ↑ Шаблон:Статья
- ↑ Шаблон:Статья
- ↑ 35,0 35,1 Шаблон:Статья
- ↑ Шаблон:Статья
- ↑ 37,0 37,1 Шаблон:Статья
- ↑ 38,0 38,1 Шаблон:Книга
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Книга
- ↑ Шаблон:Cite web
- ↑ 44,0 44,1 Шаблон:Книга
- ↑ 45,0 45,1 Шаблон:Книга
- ↑ 46,0 46,1 Шаблон:Книга
- ↑ Шаблон:Cite web
- ↑ Шаблон:Статья
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web