Русская Википедия:Четырёхскатный купол
Шаблон:Многогранник Четырёхска́тный ку́пол — один из многогранников Джонсона (J4 = (по Залгаллеру) М5). Его можно получить как срез ромбокубооктаэдра. Как и у всех куполов, многоугольник в основании имеет удвоенное число рёбер и вершин по сравнению с верхним многоугольником. В нашем случае основанием является восьмиугольник.
Многогранник Джонсона — один из 92 строго выпуклых многогранников, имеющих правильные грани, но не являющийся однородным (то есть он не правильный, не архимедов, не призма или антипризма). Название многограннику дал Норман Джонсон, который первым перечислил эти многогранники в 1966 году[1].
Формулы
Следующие формулы для объёма, площади поверхности и радиуса описанной сферы могут быть использованы, если все грани являются правильными многоугольниками со сторонами a[2]:
<math>V=(1+\frac{2\sqrt{2}}{3})a^3\approx1.94281...a^3</math>
<math>A=(7+2\sqrt{2}+\sqrt{3})a^2\approx11.5605...a^2</math>
<math>C=(\frac{1}{2}\sqrt{5+2\sqrt{2}})a\approx1.39897...a</math>
Связанные многогранники и соты
Другие выпуклые куполы
Двойственный многогранник
Двойственный многогранник для четырёхскатного купола имеет 8 треугольных и 4 дельтоидных граней:
Двойственный многогранник для четырёхскатного купола |
Развёртка двойственного многогранника |
---|---|
Файл:Dual square cupola.png | Файл:Dual square cupola net.png |
Скрещенный квадратный купол
Шаблон:Не переведено 5 — один из невыпуклых изоморфов многогранника Джонсона, который топологически идентичен выпуклому четырёхскатному куполу. Он может быть получен как срез Шаблон:Не переведено 5 или квазиромбокубооктаэдра, что аналогично получению купола как среза ромбокубооктаэдра. Как и у всех куполов, многоугольник в основании имеет удвоенное число рёбер и вершин по сравнению с верхним многоугольником. В нашем случае основанием является октаграмма.
Соты
Четырёхскатный купол является компонентой некоторых неоднородных заполняющих пространство рёшёток:
- с тетраэдрами;
- с кубами и кубооктаэдрами
- с тетраэдрами, квадратными пирамидами и различными комбинациями кубов, удлинённых четырёхугольных пирамид и удлинённых четырёхугольных бипирамид[3].
Примечания
Ссылки
- ↑ Шаблон:Книга — P. 169—200. — Шаблон:DOI.
- ↑ Stephen Wolfram, «Square cupola», Wolfram Alpha. От 20 июля, 2010.
- ↑ J4 honeycomb