Русская Википедия:Число Улама

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Число Улама — это член целочисленной последовательности, придуманной и названной в свою честь Станиславом Уламом, в 1964 году.

Определение

Стандартная последовательность Улама (или (1, 2)-числа Улама) начинается с U1 = 1 и U2 = 2. При n > 2, Un определяется, как наименьшее целое число большее Un-1, которое единственным образом разлагается в сумму двух различных более ранних членов последовательности.

Примеры

Из определения вытекает, что 3 это число Улама (1+2); и 4 это число Улама (1+3). (Тут 2+2 не является вторым представлением 4, потому что предыдущие члены должны быть различными.) Число 5 не является числом Улама, потому что 5 = 1 + 4 = 2 + 3. Последовательность начинается, как:

1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, 72, 77, 82, 87, 97, 99, 102, 106, 114, 126, 131, 138, 145, 148, 155, 175, 177, 180, 182, 189, 197, 206, 209, 219, 221, 236, 238, 241, 243, 253, 258, 260, 273, 282, ... Шаблон:OEIS.

Первые числа Улама, которые также являются простыми числами:

2, 3, 11, 13, 47, 53, 97, 131, 197, 241, 409, 431, 607, 673, 739, 751, 983, 991, 1103, 1433, 1489, 1531, 1553, 1709, 1721, 2371, 2393, 2447, 2633, 2789, 2833, 2897, ... Шаблон:OEIS.

Существует бесконечно много чисел Улама, поскольку после добавления первых n членов всегда можно добавить еще один элемент: Шаблон:Nowrap , который будет однозначно определен, как сумма двух элементов меньше него и мы можем получить еще меньшие элементы используя подобный метод, поэтому следующий элемент можно определить, как наименьший среди этих однозначно определяемых вариантов.[1]

Улам считал, что числа Улама имеют нулевую асимптотическую плотность,[2] однако, по-видимому, она равна 0.07398.[3]

Скрытая структура

Было замечено[4] , что первые 10 миллионов чисел Улама удовлетворяют свойству: <math> \cos{(2.5714474995 a_n)} < 0 </math> кроме 4 элементов <math> \left\{2,3,47,69\right\} </math> (и это продолжается и далее, как известно, до <math>n = 10^9</math>). Неравенства такого типа обычно верны для последовательностей, обладающих некоторой формой периодичности, но последовательность Улама, как известно, не является периодической, и явление не было объяснено. Его можно использовать для быстрого вычисления последовательности Улама (см. внешние ссылки).

Вариации и обобщения

Идею можно обобщить как (u, v)-числа Улама, выбрав разные начальные значения (u, v). Последовательность чисел (u, v)-чисел Улама является периодичной, если последовательность разностей между последовательными числами в последовательности периодическая. Когда v - нечетное число больше трех, последовательность (2, v)-чисел Улама является периодической. Когда v совпадает с 1 (по модулю 4) и не менее пяти, последовательность (4, v)-чисел Улама снова периодическая. Однако стандартные числа Улама не являются периодическими.[5]

Последовательность чисел называется s-аддитивной, если каждое число в последовательности после начальных 2s-членов последовательности имеет ровно s-представлений в виде суммы двух предыдущих чисел. Таким образом, числа Улама и (u, v)-числа Улама являются 1-аддитивными последовательностями.[6]

Если последовательность формируется путем добавления наибольшего числа с уникальным представлением в виде суммы двух более ранних чисел, вместо добавления наименьшего однозначно представимого числа, то результирующая последовательность представляет собой последовательность чисел Фибоначчи.[7]

Примечания

Шаблон:Reflist

Литература


Внешние ссылки

Шаблон:Классы натуральных чисел

  1. Шаблон:Harvtxt использует похожий аргумент, сформулированный как доказательство от противного. Он утверждает, что если бы было конечное число чисел Улама, то сумма последних двух также была бы числом Улама - противоречие. Однако, хотя сумма последних двух чисел в этом случае имеет единственное представление в виде суммы двух чисел Улама, она не обязательно является наименьшим числом с единственным представлением.
  2. Утверждение, что Улам предполагал это находится в OEIS Шаблон:OEIS2C, но Улам не пытался дать оценку своей последовательности в Шаблон:Harvtxt, а в Шаблон:Harvtxt он упоминал проблему асимптотической плотности этого множества, но также не пытался оценить ее. Шаблон:Harvtxt повторяет вопрос из Шаблон:Harvtxt об асимптотической плотности, снова не выдвигая предположения о ее значении.
  3. OEIS Шаблон:OEIS2C
  4. Шаблон:Harvtxt
  5. Шаблон:Harvtxt впервые заметил закономерность для u = 2 и v = 7 или v = 9. Шаблон:Harvtxt первым выдвинул гипотезу о нечетном v больше трех, и она была доказана Шаблон:Harvtxt. Периодичность (4, v)-чисел Улама была доказана Шаблон:Harvtxt.
  6. Шаблон:Harvtxt.
  7. Шаблон:Harvtxt.