Русская Википедия:Электротепловая аналогия

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Файл:Simple RC heat distribution model of a transistor on heatsink.png
Тепловая RC-модель транзистора, установленного на радиатореШаблон:Sfn. Тепловые сопротивления Rth характеризуют установившийся режим, теплоёмкости Cth — переходные процессы при изменении выделяемой на коллекторе мощности P. Теплоёмкость окружающей среды полагается бесконечно большой.

Электротепловая аналогия — метод расчёта тепловых систем, сводящий их расчёт к расчёту эквивалентных линейных электрических схем. Для этого тепловые величины (температура, количество теплоты, тепловой поток…) заменяются их электрическими аналогами (напряжение, заряд, ток…). Затем рассчитывается электрическая схема и находится искомая тепловая величина. Метод опирается на тождество математического аппарата теплофизики и электротехники: распространение тепла и электрического тока описывается одними и теми же дифференциальными уравнениями, при этом измерение электрических характеристик реальных объектов гораздо прощеШаблон:Sfn. Теория расчёта электрических цепей довольно хорошо изучена, существует много различных методов расчёта, а также компьютерных программ, выполняющих необходимые вычисления. Поэтому, приведя тепловую схему к её электрическому аналогу, уже не составит большого труда произвести необходимые вычисления.

Электрические аналоги тепловых величин

В электротепловой модели аналогом абсолютной температуры тела выступает его электрический потенциал относительно условного «нуля» (потенциала земли), аналогом разницы температур между двумя телами — электрическое напряжение между нимиШаблон:Sfn. Выделяемые тепловые мощности и потоки тепловой энергии моделируются электрическими токами, тепловые сопротивления тел — электрическими сопротивлениями, теплоёмкость тел — электрическими ёмкостямиШаблон:Sfn. Теплоёмкость окружающей среды в простейшей модели бесконечно велика, а её температура постоянна — поэтому окружающая среда моделируется как идеальный источник напряженияШаблон:Sfn. Понятие индуктивности в электротепловой аналогии отсутствует: она оперирует только электрическими, но не магнитными характеристикамиШаблон:Sfn.

Тепловая характеристика Ед.изм. Электрический аналогШаблон:SfnШаблон:Sfn Ед.изм.
Температура К или °C Напряжение В
Количество теплоты Дж или Вт•с Заряд Кл
Тепловой поток Вт Ток А
Тепловое сопротивление К/Вт Сопротивление Ом
Теплоёмкость Дж/К Ёмкость Ф
Источник тепла Идеальный источник тока А
Окружающая среда Идеальный источник напряжения В

Экспериментальное макетирование

Электротепловая модель может применяться для физического, экспериментального макетирования тепловых процессов в телах сложной формы:

  • При двумерном моделировании макет исследуемого тела вырезается из листа электропроводящей бумаги. По периметру вырезанной фигуры устанавливаются медные шины, на которые подаются электрические напряжения «источника тепла» и «окружающей среды». Протекающий между шинами ток, соответствующий тепловому потоку от источника тепла к окружающей среде, сопоставляется с эталонным током, протекающим в образцовом макете прямоугольной формыШаблон:Sfn.
  • При трёхмерном моделировании исторически применялись сосуды сложной формы, заполненные электролитом.

Модели с сосредоточенными параметрами

Файл:2N3906 Transistors.png
Полное тепловое сопротивление Rth.ja транзистора в распространённом пластмассовом корпусе TO92 составляет 200 К/Вт. При рассеянии на коллекторе мощности 500 мВт температура кристалла превысит температуру окружающей среды на 100 К. Температура кристалла приблизится к предельным для кремния 150 °С; дальнейшее увеличение мощности невозможно.

В практической электронике наиболее распространены упрощённые тепловые модели электронных приборов, в которых тепловые процессы сведены к электронным схемам с сосредоточенными параметрами. В простейшей резисторной модели каждое физическое тело (слой полупроводника, кристаллодержатель, корпус прибора, теплоотвод и т. п.) считается эквипотенциальным и соответствует узлу принципиальной схемы; выделение тепла происходит на переходах между телами (переход кристалл-кристаллодержатель, кристаллодержатель-корпус и т. п.). В резисторно-конденсаторной модели, учитывающей переходные тепловые процессы, к узлам и сопротивлениям простейшей модели добавляются ёмкости, накапливающие тепловую энергию. Модели реальных устройств могут содержать петли отрицательной либо положительной обратной связиШаблон:Sfn.

В тепловом расчёте силовых электронных приборов, устанавливаемых на радиаторах, обычно применяется деление на три составляющие — запорный слой полупроводника («кристалл»), корпус и радиатор, сообщающийся с окружающей средойШаблон:Sfn. Соответственно, в расчёте фигурируют три тепловых сопротивления — Rth.jc (запорный слой — корпус), Rth.ch (корпус — радиатор) и Rth.hа (радиатор — окружающая среда). В документации на электронные приборы обычно указываются комплексные, интегральные показатели:

  • для приборов сквозного монтажа — тепловое сопротивление запорный слой — окружающая среда при вертикальном монтаже на горизонтальную плату Rth.jaШаблон:Sfn.
  • для приборов поверхностного монтажа — тепловое сопротивление запорный слой — точка пайки на плату Rth.jsШаблон:Sfn;
  • для силовых транзисторов и интегральных схем, устанавливаемых на радиатор — тепловое сопротивление запорный слой — окружающая среда при вертикальном монтаже на горизонтальную плату без радиатора Rth.ja и тепловое сопротивление запорный слой-корпус Rth.jcШаблон:Sfn.

Международные нормы, определяющие порядок испытаний и расчёта тепловых сопротивлений электронных приборов, изложены в тринадцати стандартах JEDEC семейства JESD51. Порядок измерения наиболее часто применяемой характеристики, Rth.ja, не нормирован: создание общей нормы, применимой ко всем типам приборов и всем условиям их эксплуатации, оказалось практически невозможным[1].

Теплоёмкости реальных приборов, как правило, недоступны и могут быть лишь грубо оценены, исходя из их физических размеров. Публикации реальных данных, измеренных заводскими лабораториями, относительно редки. Например, для мощного транзистора MJE15023 производства Motorola (максимальный ток коллектора 16 А) теплоёмкость кристалла равна 0,1 Дж/К, теплоёмкость корпуса TO-3 3 Дж/К, а теплоёмкости типичных алюминиевых радиаторов измеряются сотнями Дж/КШаблон:Sfn. Разрыв между теплоёмкостями транзистора и радиатора столь велик, что теплоёмкостью транзистора можно пренебречьШаблон:Sfn. Исключение — устройства с тепловой обратной связью, в которых датчик температуры мощного транзистора установлен не на общем радиаторе, а непосредственно на корпусе транзистораШаблон:Sfn.

См. также

Примечания

Шаблон:Примечания

Источники

Ссылки