Русская Википедия:Энтропия в классической термодинамике

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Физическая величина Шаблон:Термодинамические величины Шаблон:Wikiquote Шаблон:Родственные проекты

Термодинамическая энтропия <math> S </math>, часто именуемая просто энтропией, — физическая величина, используемая для описания термодинамической системы, одна из основных термодинамических величин; энтропия и температура — сопряжённые термодинамические величины, необходимые для описания термических свойств системы и тепловых процессов в ней. Энтропия является функцией состояния и широко используется в термодинамике, в том числе технической (анализ работы тепловых машин и холодильных установок) и химической (расчёт равновесий химических реакций).

Утверждение о существовании энтропии и перечисление её свойств составляют содержание второго и третьего начал термодинамики. Значимость данной величины для физики обусловлена тем, что наряду с температурой её используют для описания термических явлений и термических свойств макроскопических объектов. Качественные представления о термическом состоянии системы связаны с тепловыми ощущениями, выражаемыми понятиями «теплее», «холоднее», «нагрев», «охлаждение», «степень нагретости». К термическим относят свойства, характеризующие поведение вещества при его нагреве или охлаждении: термические коэффициенты, теплоёмкость и другие калорические коэффициенты, постоянную Кюри, показатели термостойкости, пределы огнестойкости и т. д.; примерами термических явлений служат термическое расширение, пироэлектричество, электрокалорический эффект, теплопроводность, изменение агрегатного состояния — кристаллизация и замерзание, плавление и таяние, испарение, кипение, сублимация (возгонка), конденсация и другие процессы.

Историческая справка

Понятие энтропии, её обозначение и название были введены Р. Клаузиусом (1865). Абстрактность этого понятия — одного из краеугольных камней термодинамики — и разнообразие подходов к обоснованию существования энтропии как термодинамической величины привели к появлению аксиоматики термодинамики.

Термодинамическая дефиниция энтропии

В термодинамике энтропию вводят, обосновывая её существование, перечисляя её свойства и строя для неё шкалу измерения на основании первого, второго и третьего начал термодинамики.

В термодинамических формализмах КлаузиусаШаблон:Sfn и КаратеодориШаблон:Sfn энтропию вводят одновременно с абсолютной термодинамической температурой. Математический аппарат термодинамики ГиббсаШаблон:Sfn основан на использовании энтропии в качестве независимой термодинамической переменной, тогда как температура — естественный кандидат на эту роль, вводится как функция внутренней энергии и энтропии. Наконец, в рациональной термодинамике энтропию выражают через внутреннюю энергию и температуру, которые рассматривают как основные неопределяемые переменные теории.

Энтропия простой системы

Первое начало (закон) термодинамики устанавливает связь между внутренней энергией, работой и теплотой: одна из этих физических величин задаётся с помощью двух других, которые, будучи исходными объектами теории, в рамках самой этой теории определены быть не могут просто потому, что не существует понятий более общих, под которые их можно было бы подвестиШаблон:Sfn. Термодинамика заимствует понятия энергии и работы из других разделов физикиШаблон:SfnШаблон:Sfn, тогда как определение количеству теплоты, наоборот, даётся только и именно в термодинамике. Согласно Клаузиусу теплоту <math>Q</math> определяют через внутреннюю энергию <math>U</math> и работу <math>W</math>Шаблон:SfnШаблон:Sfn. При использовании термодинамического правила знаков[1] математическое выражение для первого начала термодинамики в формулировке Клаузиуса имеет видШаблон:Sfn:

Шаблон:EF

Первое начало в этой формулировке вводит теплоту как физическую характеристику процесса, поведение которой определяется законом сохранения энергии, но не определяет её как математический объект. Детализировать дефиницию теплоты проще всего для равновесного процесса, когда работу, а следовательно и теплоту, можно выразить через переменные состояния. Для бесконечно малого[2] равновесного процесса в простой системе[3] возможен единственный вид работы — работа расширения/сжатия <math>W_v</math>:

Шаблон:EF

где <math>P</math> — давление, <math>V</math> — объём; символ <math> \delta </math> означает, что соответствующая величина относится к бесконечно малому процессу. Таким образом, для первого начала термодинамики в формулировке Клаузиуса получаемШаблон:SfnШаблон:Sfn:

Шаблон:EF

где <math> \delta Q </math> — элементарная (бесконечно малая) теплота процесса.

Это выражение, определяющее элементарную теплоту как математический объект, есть линейная дифференциальная форма (форма Пфаффа) для двух независимых переменных. Для данной пфаффовой формы условие интегрируемости Эйлера не выполняется, то есть <math> \delta Q </math> есть функционалШаблон:Sfn, а не полный дифференциал несуществующей функции <math> Q(U,V) </math>Шаблон:Sfn. Из теории дифференциальных форм известно, однако, что если выполняется условие Фробениуса[4], то пфаффова форма имеет интегрирующий множитель/делитель, превращающий эту форму в полный дифференциал и представляющий собой функцию тех же независимых переменных, которые входят в форму ПфаффаШаблон:Sfn. Пфаффовы формы, имеющие интегрирующий множитель/делитель называют голономными; пфаффова форма двух переменных всегда голономна (теорема Коши)Шаблон:SfnШаблон:Sfn. Поэтому для простых равновесных систем существует функция состояния <math> S(U,V) </math>, полный дифференциал которой равен

Шаблон:EF

где

<math>T = T(U,V)</math>

есть интегрирующий делитель для Шаблон:Eqref. Клаузиус назвал функцию состояния <math>S</math> энтропией (от греческого ἐντροπία — изменение, превращение, преобразование). Второе начало термодинамики утверждает, что энтропия существует для любых равновесных систем, а не только простых, и что интегрирующий делитель <math>T</math> есть абсолютная термодинамическая температураШаблон:SfnШаблон:SfnШаблон:SfnШаблон:Sfn. Неравновесная термодинамика распространяет представление о локальной энтропии и локальной температуре на любые термодинамические системы.

Интегрирование Шаблон:Eqref приводит к появлению в выражении для функции <math>S(U,V)</math> произвольной постоянной, зависящей от выбора начальной точки отсчёта энтропии. Произвол в выборе начального состояния для энтропии устраняет третий закон термодинамики.

Энтропия закрытой системы в термодинамике Клаузиуса — Каратеодори

Традиционный подход к построению термодинамики (аксиоматика Клаузиуса — Каратеодори) основан на использовании представления о внутренней энергии как базовом понятии теории, заимствовании формул для вычисления термодинамической работы из механики и электродинамики сплошных сред, и Шаблон:Eqref.

Помимо работы расширения/сжатия система может одновременно выполнять другие виды работ, например работу по изменению площади поверхности раздела фаз, работу перемещения в поле тяготения, работу поляризации диэлектрика в электрическом поле и т. д. Объединяет все эти виды работ формальная структурная идентичность расчётных формул друг с другом и с Шаблон:EqrefШаблон:SfnШаблон:SfnШаблон:Sfn: Шаблон:EF где <math>\delta W_i</math> — элементарная работа <math>i</math>-го типа, <math>x_i</math> — обобщённая координата, сопряжённая с обобщённой силой <math>X_i.</math> Каждой обобщённой координате соответствует своя обобщённая сила; физические переменные, соответствующие обобщённым координатам и силам, конкретизируют применительно к решаемой задачеШаблон:SfnШаблон:Sfn.

Если однородная система одновременно совершает несколько различных видов работ, то они суммируются и полная работа системы <math>\delta W</math> равнаШаблон:SfnШаблон:SfnШаблон:Sfn Шаблон:EF а для первого начала термодинамики получаем соотношениеШаблон:SfnШаблон:Sfn: Шаблон:EF которое как и в случае простой системы представляет собой форму Пфаффа. Следствием второго начала термодинамики в любой его формулировке является вывод о том, что пфаффова форма <math>\delta Q</math> при любом числе переменных всегда голономнаШаблон:Sfn и, следовательно, для любой закрытой термодинамической системы существуют энтропия

Шаблон:EF

и абсолютная термодинамическая температура

<math>T = T(U,\{x_i\}).</math>

Выражение <math>\{x_i\}</math> есть сокращение для перечисления <math>x_1,x_2,...,x_i,...</math> переменных определённого типа, в данном случае — обобщённых координат.

Энтропия открытой системы

Принимая, что теплота и работа являются двумя единственно возможными формами передачи энергииШаблон:SfnШаблон:SfnШаблон:Sfn, а изменение энергии, связанное с переносом вещества в открытой системе, есть составная часть общей работы, называемая химической работой (работой перераспределения масс веществШаблон:Sfn), в случае однородной открытой системы Шаблон:Eqref следует дополнить слагаемым, учитывающим элементарную химическую работу <math>\delta Z</math>Шаблон:SfnШаблон:SfnШаблон:SfnШаблон:SfnШаблон:Sfn:

Шаблон:EF

где <math>m_j</math> — масса <math>j</math>-го компонента[5], <math>\mu_j</math> — химический потенциал этого компонента.

Пфаффова форма <math>\delta Q</math> для открытой однородной системы равнаШаблон:Sfn

Шаблон:EF

Дальнейшие рассуждения о существовании энтропии

<math> S = S(U,\{x_i\},\{m_j\}) </math>

и абсолютной термодинамической температуры

<math>T = T(U,\{x_i\},\{m_j\}) </math>

для открытой системы ничем не отличаются от соображений, высказанных при рассмотрении закрытой системы, поэтому ниже перечислены причины, по которым открытые системы потребовали отдельного рассмотрения.

Первая из этих причин состоит в том, что использование в понятийном аппарате термодинамики химической работы как части общей работы делает неэквивалентными представления об адиабатной изоляции как накладывающей запрет на обмен веществом (то есть любая адиабатно изолированная система есть система закрытая или, говоря иначе, масса есть адиабатически заторможенная величина)Шаблон:SfnШаблон:SfnШаблон:SfnШаблон:Sfn, и адиабатной изоляции как допускающей обмен энергией только в форме работыШаблон:SfnШаблон:Sfn. Восстановить эквивалентность приведённых выше формулировок об адиабатной изоляции удаётся, если модифицировать Шаблон:Eqref, добавив к теплоте и работе третью форму передачи энергии — энергию переноса массы <math>Z</math>Шаблон:SfnШаблон:Sfn:

Шаблон:EF

где <math>\delta Z</math> задаётся Шаблон:Eqref.

Вторая причина отдельного рассмотрения вопроса об энтропии открытых систем заключается в следующем. За исключением химического потенциала все входящие в Шаблон:Eqref переменные в рамках термодинамического формализма представляют собой неопределяемые величины, заимствуемые из других разделов физики, что подразумевает необязательность их описания в самой термодинамике. Химический потенциал вводится в термодинамике и либо должен быть отнесён к базовым неопределяемым понятиям, для которых возможно только пояснительное описание, либо же от термодинамики требуется точная дефиниция химического потенциала. Как неопределяемую величину химический потенциал можно вводить одновременно с температурой и энтропией (более, того П. А. ЖилинШаблон:Sfn считает такой подход единственно правильным[6]), но традиционно химический потенциал предпочитают вводить в рассмотрение как вторичную переменную на основе предварительно сформированного представления об энтропии открытой системы. Для этого вслед за У. ГиббсомШаблон:SfnШаблон:Sfn без доказательства принимают утверждение о существовании энтропии открытой системыШаблон:SfnШаблон:SfnШаблон:Sfn

Шаблон:EF

как функции состояния, при неизменности масс компонентов совпадающей с Шаблон:Eqref. Из фундаментального уравнения Гиббса в дифференциальной формеШаблон:Sfn

Шаблон:EF

находим значения частных производных энтропии:

<math> \left (\frac {\partial S}{\partial U} \right)_{ \{x_i\},\{m_j\} } = \frac {1} {T} , </math>
<math> \left (\frac {\partial S}{\partial x_r} \right)_{U, \{x_{i \neq r} \},\{m_j\} } = - \frac {X_r} {T} , </math>
<math> \left (\frac {\partial S}{\partial V} \right)_{x_i \neq V,\{m_j\} } = \frac {P} {T} . </math>

Химический потенциал <math>k</math>-го компонента выразим через частную производную энтропии по массе этого компонентаШаблон:Sfn:

Шаблон:EF

Энтропия в термодинамике Гиббса

Построение теории на основе постулирования существования энтропии как функции состояния, в состав независимых переменных которой входят массы компонентов, составляет главное содержание термодинамики ГиббсаШаблон:Sfn, а способ, каким выполнено распространение термодинамики Клаузиуса на открытые системы, позволяет говорить об аксиоматике ГиббсаШаблон:SfnШаблон:Sfn. В термодинамике Гиббса вводят понятия компонента системы, фазы и многофазной гетерогенной системы, постулируют существование внутренней энергии <math>U</math> и энтропии <math>S</math> как аддитивных переменных состояния, постулируют связь этих величин с независимыми переменными состояния в виде фундаментальных уравнений Гиббса в энергетическом и энтропийном выражениях, постулируют аддитивность входящих в эти фундаментальные уравнения независимых переменных, постулируют, что <math>T</math> есть термодинамическая температура, вводят химический потенциал <math>\mu</math> и постулируют общее условие термодинамического равновесия в системе[7], рассматриваемое далее в числе свойств энтропии.

Обратите внимание, что содержательную дефиницию температуры по ГиббсуШаблон:SfnШаблон:SfnШаблон:Sfn Шаблон:EF </math>|style=|ref=Термодинамическая температура по Гиббсу|center=}} можно, с другой стороны, рассматривать и как описательную дефиницию энтропии. А именно, энтропия в термодинамике Гиббса есть такая экстенсивная переменная состояния, что производная внутренней энергии по энтропии представляет собой интенсивную переменную состояния, обладающую всеми положенными термодинамической температуре свойствами.

Энтропия в рациональной термодинамике

Шаблон:Main

Рациональная термодинамика не подразделяет термодинамику на равновесную и неравновесную; обе эти дисциплины рассматриваются как единая часть физики сплошных средШаблон:SfnШаблон:SfnШаблон:SfnШаблон:Sfn. Равновесная рациональная термодинамика есть результат применения общей теории к системам в состоянии равновесияШаблон:Sfn. Исходные неопределяемые понятия теории — энергия <math>E</math>, объём <math>V</math> и число молей компонента <math>n</math>. По аналогии с давлением

<math> P = - \frac {\partial E}{\partial V} </math>

при механическом равновесии имеющем одинаковое значение во всех частях системы, вводят химический потенциал <math> \mu </math>

<math> \mu \equiv \frac {\partial E}{\partial n} , </math>

как интенсивную величину, имеющую при химическом равновесии одно и то же значение во всех частях системыШаблон:Sfn. Абсолютную термодинамическую температуру вводят посредством следующей аксиомы: существует интенсивная термодинамическая величина, температура

<math> T = T(E,V,n) , </math>

которая характеризует степень нагретости тел и обладает следующими свойствамиШаблон:Sfn:

  • в выбранном за начало отсчёта состоянии температура равна нулю
<math> T_{E=0} = 0 </math> ;
  • температура монотонно растёт с увеличением энергии системы
<math> \frac {\partial T}{\partial E} > 0 </math> ;
  • при термодинамическом равновесии имеет одно и то же значение во всех частях системы.

Энтропию в рациональной термодинамике задают как аддитивную величину, равнуюШаблон:Sfn

<math> S(E) \equiv \int^{E}_{0} \frac{1}{T(E)} dE .</math>

Свойства энтропии, вытекающие из этого определенияШаблон:Sfn:

<math> S_{E=0} = S_{T=0} = 0</math> ;
<math> \frac {\partial S}{\partial E} = \frac {1}{T} > 0 </math> ;


<math> \frac {\partial^2 S}{\partial E^2} = -\frac {1}{T^2 C_V} < 0 </math> ;

где <math> C_V </math> — теплоёмкость системы при постоянном объёме. Из определения энтропии и её свойств следует, что при условии постоянства энергии энтропия системы максимальна, когда все части системы имеют одинаковую температуру — вариационный принцип максимальности энтропии в состоянии равновесияШаблон:Sfn. Таким образом, энтропия есть монотонная выпуклая функция энергии, достигающая максимума в состоянии термодинамического равновесия; состояние системы, принятое за начало шкалы отсчёта энергии, есть одновременно состояние для начальных точек отсчёта температуры и энтропии.

Свойства энтропии

Перечисление свойств энтропии дано применительно к термодинамике Гиббса; примеры, приводимые для иллюстрации перечисляемых свойств энтропии, относятся, как правило, к открытым однородным термодеформационным системам, для которых справедливо фундаментальное уравнение Гиббса в энтропийном выраженииШаблон:SfnШаблон:Sfn: Шаблон:EF

Как следствие аддитивности получаем, что энтропия в Шаблон:Eqref есть однородная функция первого порядка всех независимых переменныхШаблон:SfnШаблон:Sfn, то есть для <math> \lambda > 0 </math>

Шаблон:EF

и для неё справедливо тождество (теорема) ЭйлераШаблон:Sfn:

Шаблон:EF

  • Для однородной системы частная производная энтропии по внутренней энергии есть величина, обратная абсолютной термодинамической температуре (термодинамическая дефиниция температуры как следствие второго начала термодинамики)Шаблон:SfnШаблон:SfnШаблон:SfnШаблон:Sfn:

Шаблон:EF \right ]^{-1} . </math>|style=|ref=Термодинамическая дефиниция температуры|center=}}

В соответствии с теоремой об обратных величинахШаблон:Sfn это определение совпадает с дефиницией равновесной температурой по ГиббсуШаблон:SfnШаблон:SfnШаблон:Sfn:

Шаблон:EF . </math>|style=|ref=Термодинамическая температура по Гиббсу|center=}}

<math> 0 < T < \infty . </math>
Нуль и бесконечность допустимы в качестве пределовШаблон:Sfn.
  • Для любой термодинамической системы состояния с наименьшей энтропией и наименьшей температурой совпадают (постулат Планка)Шаблон:SfnШаблон:Sfn. С приближением температуры к абсолютному нулю энтропия перестаёт зависеть от температуры и приближается к определённому постоянному значению, которое можно положить равным нулюШаблон:Sfn и принять за начало отсчёта энтропии, устранив тем самым упомянутый в разделе Энтропия простой системы произвол в выборе постоянной интегрирования для энтропии:

Шаблон:EF

Согласно постулату Тиссы внутренняя энергия ограничена и эта граница соответствует абсолютному нулю температурыШаблон:SfnШаблон:Sfn. Таким образом, состояние системы при абсолютном нуле температуры, когда все термодинамические величины, характеризующие равновесное состояние, перестают зависеть от температурыШаблон:Sfn, наилучшим образом подходит в качестве стандартного состояния начала отсчёта основных термодинамических величин.
  • Энтропия изолированной системы в состоянии термодинамического равновесия имеет максимальное значение (постулат Гиббса)Шаблон:SfnШаблон:Sfn, то есть для равновесия изолированной системы необходимо и достаточно, чтобы при всех возможных (не нарушающих постоянства внутренней энергии, обобщённых координат и масс компонентов) изменениях её состояния вариация энтропии <math> \Delta S </math> системы не была положительнойШаблон:Sfn:

Шаблон:EF

Поскольку речь идёт об изолированной системе, внешнее воздействие на которую запрещено, понятие вариации в данном случае означает виртуальное изменение энтропии[10]. Знак равенства в этом выражении относится к безразличному равновесию.
Условие равновесия Гиббса вытекает из входящего в состав второго начала термодинамики постулата Клаузиуса о неубывании энтропии адиабатно изолированной системыШаблон:Sfn

Энтропия как характеристическая функция

Шаблон:Main

Энтропия и теплота квазистатического (равновесного) процесса

Из Шаблон:Eqref и Шаблон:Eqref получаем выражение для элементарной теплоты равновесного (квазистатического) процессаШаблон:SfnШаблон:Sfn: Шаблон:EF (для простой равновесной системы это выражение непосредственно вытекает из Шаблон:Eqref).

Данное Шаблон:Eqref, связывающее термодинамику Клаузиуса с термодинамикой Гиббса, представляет интерес для пользователей, которым требуется изложить материал из старой учебной и научной литературы с применением терминологии, либо вовсе не использующей понятие «теплота», либо использующей его как определяемое через энтропию и абсолютную температуру вторичное понятие.

Энтропия как характеристика изотермического процесса

Файл:Зависимость удельной энтропии воды от температуры.png
Зависимость удельной энтропии воды от температуры

Для равновесного изотермического процесса с нулевой работой интегрирование выражения для Шаблон:Eqref даёт следующее выражение для изменения внутренней энергии:

<math> \Delta U ~=~ Q ~+~ W ~=~ T \Delta S , </math>

то есть в любом равновесном изотермическом процессе с нулевой работой энергия расходуется на увеличение энтропии системы и выделяется при уменьшении энтропии. Преобразуем это уравнение к виду

<math> S_2 - S_1 ~=~ \frac{U_2}{T} - \frac{U_1}{T}</math>

и назовём отношение <math>\frac{U}{T}</math> приведённой внутренней энергией. Отсюда вытекает следующая трактовка — одна из нескольких существующих — физического смысла энтропии: энтропия есть приведённая внутренняя энергия изотермической системы.

Рассмотрим в качестве примера фазовые переходы в воде при атмосферном давлении (см. рисунок). При таянии льда подводимая к системе энергия расходуется на увеличение энтропии системы вследствие изменения структуры HШаблон:SubO, тогда как температура системы лёд + вода остаётся близкой к 0 °C (273 К) до полного исчезновения льда. При замерзании воды имеет место обратная ситуация: энергия выделяется в окружающую среду при 0 °C. Нагрев воды, образовавшейся при таянии льда, ведёт к повышению температуры воды вплоть до её закипания при 100 °C (373 К). Кипение воды при постоянном давлении есть процесс изотермический: подводимая энергия расходуется на испарение воды и увеличение энтропии системы вода + водяной пар, тогда как температура остаётся близкой к 100 °C до полного исчезновения жидкой воды.

Файл:Nicaragua 1971 Mi 1620 stamp and back (The Ten Mathematical Equations that Changed the Face of the Earth. Boltzman's equation - movement of gases).jpg
Почтовая марка Никарагуа 1971 года и её оборот. Уравнение Больцмана (движение газов)

Статистическое определение энтропии: принцип Больцмана

В 1877 году Людвиг Больцман установил связь энтропии с вероятностью данного состояния. Позднее эту связь представил в виде формулы Макс Планк:

<math>S=k\cdot\ln(\Omega),</math>

где константа <math>k=</math>1,38Шаблон:E Дж/К названа Планком постоянной Больцмана, а <math>\Omega</math> — статистический вес состояния, является числом возможных микросостояний (способов), с помощью которых можно составить данное макроскопическое состояние. Этот постулат, названный Альбертом Эйнштейном принципом Больцмана, положил начало статистической механике, которая описывает термодинамические системы, используя статистическое поведение составляющих их компонентов. Принцип Больцмана связывает микроскопические свойства системы (<math>\Omega</math>) с одним из её термодинамических свойств (<math>S</math>).

Рассмотрим, например, идеальный газ в сосуде. Микросостояние определено как позиции и импульсы (моменты движения) каждого составляющего систему атома. Связность предъявляет к нам требования рассматривать только те микросостояния, для которых: (I) месторасположения всех частей расположены в рамках сосуда, (II) для получения общей энергии газа кинетические энергии атомов суммируются.

Согласно определению, энтропия является функцией состояния, то есть не зависит от способа достижения этого состояния, а определяется параметрами этого состояния. Так как <math>\Omega</math> может быть только натуральным числом (1, 2, 3, …), то энтропия Больцмана должна быть неотрицательной — исходя из свойств логарифма.

Понимание энтропии как меры беспорядка

Существует мнение, что мы можем смотреть на энтропию и как на меру беспорядка в системе. В определённом смысле это может быть оправдано, потому что мы думаем об «упорядоченных» системах как о системах, имеющих очень малую возможность конфигурирования, а о «беспорядочных» системах как об имеющих очень много возможных состояний. Собственно, это просто переформулированное определение энтропии как числа микросостояний на данное макросостояние.

Рассмотрим, например, распределение молекул идеального газа. В случае идеального газа наиболее вероятным состоянием, соответствующим максимуму энтропии, будет равномерное распределение молекул. При этом реализуется и максимальный «беспорядок», так как при этом будут максимальные возможности конфигурирования.

Получившее повсеместное распространение понимание энтропии как меры беспорядка в термодинамической системе не является, тем не менее, общепринятымШаблон:Sfn: «Тождественность энтропии с беспорядком не только никем никогда не была доказана и не только не может быть доказана в принципе, но и прямо противоречит реально наблюдаемым фактам…»Шаблон:Sfn; «…применительно к реальным системам энтропия не является мерой беспорядка»Шаблон:Sfn; «…в ходе роста энтропии Вселенной общая её (Вселенной) сложность растёт, однако для составляющих Вселенную реальных (под)систем энтропия мерой беспорядка/сложности не является»Шаблон:Sfn.

Границы применимости понимания энтропии как меры беспорядка

Подобное определение беспорядка термодинамической системы как количества возможностей конфигурирования системы фактически дословно соответствует определению энтропии как числа микросостояний на данное макросостояние. Проблемы начинаются в двух случаях:

  • когда начинают смешивать различные понимания беспорядка, и энтропия становится мерой беспорядка вообще;
  • когда понятие энтропии применяется для систем, не являющихся термодинамическими.

В обоих этих случаях применение понятия термодинамической энтропии совершенно неправомерно[11].

Рассмотрим оба пункта подробнее.

Рассмотрим пример термодинамической системы — распределение молекул в поле тяготения. В этом случае наиболее вероятным распределением молекул будет распределение согласно барометрической формуле Больцмана. Другой пример — учёт электромагнитных сил взаимодействия между ионами. В этом случае наиболее вероятным состоянием, соответствующим минимуму свободной энергии, будет упорядоченное кристаллическое состояние, а совсем не «хаос», хотя в состоянии «хаоса» значение конфигурационной энтропии системы и ниже. (Термин «хаос» здесь понимается в смысле беспорядка — в наивном смысле. К хаосу в математическом смысле как сильно неустойчивой нелинейной системе это не имеет отношения, конечно.)

Рассмотрим случай с кристаллической решёткой более подробно. Кристаллическая решётка может быть и в равновесном, и в неравновесном состоянии, как и любая термодинамическая система. Скажем, возьмём следующую модель — совокупность взаимодействующих осцилляторов. Рассмотрим некоторое неравновесное состояние: все осцилляторы имеют одинаковое отклонение от положения равновесия. С течением времени эта система перейдёт в состояние ТД равновесия, в котором отклонения (в каждый момент времени) будут подчинены некоторому распределению типа Максвелла (только это распределение будет для отклонений, и оно будет зависеть от типа взаимодействия осцилляторов). В таком случае максимум энтропии будет действительно реализовывать максимум возможностей конфигурирования, то есть — беспорядок согласно вышеуказанному определению. Но данный «беспорядок» вовсе не соответствует «беспорядку» в каком-либо другом понимании, например, информационному. Такая же ситуация возникает и в примере с кристаллизацией переохлаждённой жидкости, в которой образование структур из «хаотичной» жидкости идёт параллельно с увеличением энтропии.

То есть при образовании кристалла из переохлаждённой жидкости энтропия увеличивается с одновременным ростом температуры. Если кристаллизация сопровождается отводом тепла из системы, то энтропия при этом уменьшится.

Это неверное понимание энтропии появилось во время развития теории информации, в связи с парадоксом термодинамики, связанным с мысленным экспериментом так называемый «демона Максвелла». Суть парадокса заключалась в том, что рассматривалось два сосуда с разными температурами, соединённых узкой трубкой с затворками, которыми управлял так называемый «демон». «Демон» мог измерять скорость отдельных летящих молекул, и таким образом избирательно пропускать более быстрые в сосуд с высокой температурой, а более медленные — в сосуд с низкой. Из этого мысленного эксперимента вытекало кажущееся противоречие со вторым началом термодинамики.

Парадокс может быть разрешён при помощи теории информации. Для измерения скорости молекулы «демон» должен был бы получить информацию о её скорости. Но всякое получение информации — материальный процесс, сопровождающийся возрастанием энтропии. Количественный анализ[12] показал, что приращение энтропии при измерении превосходит по абсолютной величине уменьшение энтропии, вызванное перераспределением молекул «демоном».

Измерение энтропии

В реальных экспериментах очень трудно измерить энтропию системы. Техники измерения базируются на термодинамическом определении энтропии и требуют экстремально аккуратной калориметрии.

Для упрощения мы будем исследовать механическую систему, термодинамические состояния которой будут определены через её объём <math>V</math> и давление <math>P</math>. Для измерения энтропии определённого состояния мы должны сначала измерить теплоёмкость при постоянных объёме и давлении (обозначенную <math>C_V</math> и <math>C_P</math> соответственно), для успешного набора состояний между первоначальным состоянием и требуемым. Тепловые ёмкости связаны с энтропией <math>S</math> и с температурой <math>T</math> согласно формуле:

<math>C_X = T \left(\frac{\partial S}{\partial T}\right)_X,</math>

где нижний индекс <math>X</math> относится к постоянным объёму и давлению. Мы можем проинтегрировать для получения изменения энтропии:

<math>\Delta S = \int \frac{C_X}{T} dT.</math>

Таким образом, мы можем получить значение энтропии любого состояния (<math>P</math>, <math>V</math>) по отношению к первоначальному состоянию (<math>P_0</math>, <math>V_0</math>). Точная формула зависит от нашего выбора промежуточных состояний. Для примера, если первоначальное состояние имеет такое же давление, как и конечное состояние, то

<math> S(P,V) = S(P_0, V_0) + \int^{T(P,V)}_{T(P_0,V_0)} \frac{C_P(P,V(T,P))}{T} dT. </math>

В добавление, если путь между первым и последним состояниями лежит сквозь любой фазовый переход первого рода, скрытая теплота, ассоциированная с переходом, должна также учитываться.

Энтропия первоначального состояния должна быть определена независимо. В идеальном варианте выбирается первоначальное состояние как состояние при экстремально высокой температуре, при которой система существует в виде газа. Энтропия в этом состоянии подобна энтропии классического идеального газа плюс взнос от молекулярных вращений и колебаний, которые могут быть определены спектроскопически.

Построение графика изменения энтропии

Шаблон:Main Следующее уравнение может быть использовано для построения графика изменения энтропии на диаграмме <math>P-V</math> для идеального газа:

<math> S = n\ \ln (P^{C_V} V^{C_P}). </math>

Здесь два замечания:

  • это не определение энтропии (но выведено из него для случая идеального газа);
  • предполагается, что <math>C_V</math> и <math>C_P</math> постоянные, что на самом деле не всегда так.

«Что такое энтропия?»

Файл:Что сложнее — паровоз или лошадь.png
Что сложнее: паровоз или лошадь? Когда появились первые паровозы, путеец рассказал обратившимся к нему ошеломлённым крестьянам об устройстве и действии паровой машины и закончил объяснение вопросом: «Всё понятно?» — «Всё! Кроме того, где же внутри находится лошадь?» Крестьяне с детства знают лошадь, она для них в объяснении не нуждается. С научной точки зрения лошадь несравненно более сложна, чем тепловая машина, так что наука пыталась представить лошадь как тепловую машину, а не наоборот

Однозначного ответа на этот вопрос не существует по той простой причине, что разных энтропий много — представление об энтропии используется в различных научных дисциплинах: термодинамике, статистической физике, теории информации и др. Но и внутри каждой из перечисленных дисциплин единообразия также нет и в помине: в теории информации рассматривают энтропию Шеннона, энтропию Реньи, энтропию Чисара, энтропию Хаврда — Чарват — ДарошиШаблон:Sfn; статистическая физика оперирует энтропиями Больцмана, Гиббса, Цаллиса; существуют различные дефиниции термодинамической энтропии. Содержательная дефиниция той или иной конкретной энтропии зависит от аксиоматики системы построения/изложения, использующей эту энтропию. По указанной причине не существует универсальной дефиниции термодинамической энтропии, ибо для различных аксиоматических систем термодинамики ответ на вынесенный в заголовок вопрос будет различен.

Студенты, приступающие к изучению термодинамики, часто жалуются на непонятность энтропии, связанную с отсутствием наглядности (рисунок иллюстрирует относительность представлений людей о наглядности, понятности и простоте термодинамических систем[K 1]).

Для описания термических явлений в физике вводят новые комплементарные (взаимодополняющие) физические величины — температуру и энтропию, — содержательные дефиниции которым не дают ни в механике, ни в электродинамике. В термодинамике Клаузиуса — Каратеодори энтропию вводят как приведённую внутреннюю энергию изотермической системы, то есть разность энтропий равна приведённой теплоте изотермического процесса.

В термодинамике Гиббса и в системе А. А. Гухмана энтропия представляет собой неопределяемое базовое понятие — таков в этих системах содержательный ответ на рассматриваемый вопрос[K 2]. В термодинамической аксиоматике А. А. Гухмана Шаблон:SfnШаблон:SfnШаблон:SfnШаблон:SfnШаблон:SfnШаблон:Sfn и рациональной термодинамике в трактовке П. А. ЖилинаШаблон:Sfn[K 3] и температуру, и энтропию вводят как неопределяемые базовые переменные, несводимые к более простым[K 4]. Пояснительное дополнение к дефиниции энтропии по Гухману разъясняет, что энтропия есть координата состояния при термическом взаимодействии (теплообмене), которое выражается в переносе энтропии от одного объекта к другомуШаблон:Sfn.

В рациональной термодинамике в трактовке школы Трусделла в качестве базовой термической переменной используют температуру <math>T</math>, то есть привычную и по этой причине всем понятную физическую величину. Энтропию <math>S</math> вводят как полезную вспомогательную функцию энергии <math>E</math> и температурыШаблон:Sfn:

<math> S \equiv \int^{E}_{0} \frac{1}{T} dE ,</math>

но, в отличие от другой функции энергии и температуры, — теплоёмкости <math>C</math>Шаблон:Sfn

<math> C \equiv \frac {\partial E}{\partial T} , </math>

в формулу, служащую дефиницией энтропии, входит не производная, а интеграл. Пояснительное дополнение к ответу, пригодное почти[K 5] для любого способа изложения термодинамики, сообщает, что энтропия необходима для построения математического аппарата термодинамики и, следовательно, привлечение термодинамики к решению любой научной или практической задачи явно или неявно подразумевает использование энтропии. Польза, приносимая людям от обращения к термодинамике, есть польза от ввода энтропии в понятийный аппарат науки. Дополнительно к сказанному можно провести аналогию с теплоёмкостью: если для неизотермических процессов нагрева льда, жидкой воды и водяного пара затраты энергии равны произведению теплоёмкости на разность температур, то для изотермических процессов таяния и кипения затраты энергии равны произведению температуры на разность энтропий.

Понять энтропию и её значение для термодинамики означает, что необходимо знать происхождение этой величины, понимать её связи с другими термодинамическими переменными и уметь применять энтропию на практике[K 6]Шаблон:Sfn.

См. также

Шаблон:Колонки

Шаблон:Колонки/конец

Комментарии

Шаблон:Примечания

Примечания

Шаблон:Примечания

Литература

Шаблон:Refbegin2

Шаблон:Refend

Ссылки

Шаблон:Rq

Шаблон:Спам-ссылки

  1. Знак <math>+</math> или <math>-</math> перед <math>W</math> есть результат соглашения, какую работу считать положительной — совершаемую системой или совершаемую над системой. Встречающиеся в научной и учебной литературе варианты формулировок первого начала, отличающиеся знаками входящих в формулы величин, эквивалентны друг другу.
  2. Элементарным (инфинитезимальным) называют процесс, для которого разница между начальным и конечным состояниями системы бесконечно мала.
  3. Простой называют закрытую термодеформационную систему, представляющую собой однородную изотропную среду (фазу) неизменного химического состава и массы, описываемую посредством переменных <math> P </math> (давление), <math> V </math> (объём) и <math> T </math> (температура). Такая система обладает двумя термодинамическими степенями свободы, то есть только две переменные состояния из трёх перечисленных являются независимыми. К простым системам относятся, в частности, газы и жидкости (флюиды) в ситуации, когда поверхностными эффектами и наличием внешних силовых полей можно пренебречь. В более широкой трактовке под простой понимают любую термодеформационную систему с двумя степенями свободы, то есть такую термодинамическую систему, единственным видом работы которой является работа расширения (Сычёв В. В., Дифференциальные уравнения термодинамики, 1991, с. 9).
  4. Условия интегрируемости дифференциальных полиномов подробно рассмотрены в книге Белоконь Н. И., Термодинамика, 1954, с. 137—138.
  5. Использование масс компонентов, а не масс составляющих систему веществ в качестве обобщённых координат в выражении для химической работы означает отказ от прямого рассмотрения влияния химических реакций на массы веществ, ибо химические превращения в системе уже учтены при подсчёте числа компонентов.
  6. «…Понятия энергии, температуры, энтропии и химического потенциала вводятся одновременно и по отдельности определить их принципиально нельзя» (с. 48), «…Нельзя сначала определить внутреннюю энергию, а затем химический потенциал и энтропию. Все эти понятия могут быть введены только одновременно» (с. 140).
  7. Сам Гиббс эти постулаты в своей основной термодинамической работе «О равновесии гетерогенных веществ» формулировал по мере необходимости, как бы мимоходом, и не называл принимаемые им без доказательства утверждения ни аксиомами, ни постулатами.
  8. В термодинамике различают аддитивность по размерам системы (длине упругого стержня или пружины, площади поверхности раздела, объёму) и аддитивность по массе. Ясно, что последнее понятие не универсально, и даже аддитивность экстенсивных переменных по объёму не гарантирует, что к этим переменным применимо представление об аддитивности по массе. Например, оно непригодно для аддитивных по объёму переменных фотонного газа — системы с нулевой массой.
  9. Шаблон:Cite web
  10. Мысленное допустимое (не противоречащее условиям существования системы) изменение энтропии, не зависящее от времени. Встречающееся в литературе определение вариации как отклонения от равновесия, допускаемого наложенными на систему связями (условиями), означает то же самое.
  11. Lambert Frank L. A Brief Introduction to the Second Law and to Entropy for Chemistry Students
  12. Бриллюэн Л. Наука и теория информации. — М., 1960.


Ошибка цитирования Для существующих тегов <ref> группы «K» не найдено соответствующего тега <references group="K"/>